Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Robust classifier learning with fuzzy class labels for large-margin support vector machines
 
  • Details

Robust classifier learning with fuzzy class labels for large-margin support vector machines

Journal
Neurocomputing
Journal Volume
99
Pages
1-14
Date Issued
2013
Author(s)
Yang, C.-Y.
Chou, J.-J.
FENG-LI LIAN  
DOI
10.1016/j.neucom.2012.04.009
URI
http://www.scopus.com/inward/record.url?eid=2-s2.0-84867888158&partnerID=MN8TOARS
http://scholars.lib.ntu.edu.tw/handle/123456789/379884
Abstract
Using class label fuzzification, this study develops the idea of refreshing the attitude of the difficult training examples and gaining a more robust classifier for large-margin support vector machines (SVMs). Fuzzification relaxes the specific hard-limited Lagrangian constraints of the difficult examples, extends the infeasible space of the canonical constraints for optimization, and reconfigures the consequent decision function with a wider margin. With the margin, a classifier capable of achieving a high generalization performance can be more robust. This paper traces the rationale for such a robust performance back to the changes of governing loss function. From the aspect of loss function, the reasons are causally explained. In the study, we also demonstrate a two-stage system for experiments to show the changes corresponding to the label fuzzification. The system first captures the difficult examples in the first-stage preprocessor, and assigns them various fuzzified class labels. Three types of membership functions, including a constant, a linear, and a sigmoidal membership function, are designated in the preprocessor to manipulate the within-class correlations of the difficult examples for reference of the fuzzification. The consequent performance benchmarks confirm the robust and generalized ability due to the label fuzzification. Since the change of yi' is fundamental, the idea may be transplanted to different prototypes of SVM. © 2012 Elsevier B.V.
Subjects
Classification; Fuzzy class label; Lagrange constraint; Loss function; Machine learning; Membership function; Pattern recognition; Support vector machines
SDGs

[SDGs]SDG16

Other Subjects
Canonical constraints; Class labels; Classifier learning; Decision functions; Fuzzifications; Fuzzy class; Generalization performance; Lagrange; Lagrangian; Loss functions; Robust performance; Training example; Two-stage systems; Benchmarking; Classification (of information); Lagrange multipliers; Learning systems; Pattern recognition; Support vector machines; Membership functions; article; calculation; fuzzy system; geometry; intermethod comparison; mathematical computing; pattern recognition; priority journal; process optimization; statistical distribution; statistical model; support vector machine; system analysis
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science