Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. A Robust Distributed Hierarchical Online Learning Approach for Dynamic MEC Networks
 
  • Details

A Robust Distributed Hierarchical Online Learning Approach for Dynamic MEC Networks

Journal
IEEE Journal on Selected Areas in Communications
Journal Volume
40
Journal Issue
2
Pages
641-656
Date Issued
2022
Author(s)
Wu Y.-C
Lin C
Quek T.Q.S.
CHE LIN  
DOI
10.1109/JSAC.2021.3118342
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119621928&doi=10.1109%2fJSAC.2021.3118342&partnerID=40&md5=38a8ebe068704333f957acdd16d465c3
https://scholars.lib.ntu.edu.tw/handle/123456789/606962
Abstract
We consider a resource allocation and offloading decision-making problem in a mobile edge computing (MEC) network. Since the locations of user equipments (UEs) vary over time in practice, we consider a dynamic network, where the UEs could leave or join the network coverage at any location. Since the joint offloading decision that minimizes the network cost also varies with the topology, the expected best offloading decision for the previous topology would not match the new topology. Consequently, the system suffers from recurring cost peaks due to the topology change. Thus, we propose a robust distributed hierarchical online learning approach to enhance the algorithm's robustness and reduce the cost peaks. Specifically, the UEs learn the utility of each offloading decision via deep Q networks (DQNs) from their interaction with the MEC network. Meanwhile, the computational access points (CAPs) train their deep neural networks (DNNs) online with the real-time data collected from the UEs to predict their corresponding Q-value vectors. Therefore, the UEs and CAPs form a hierarchical collaborative-learning structure. When the topology changes, each UE downloads its Q-value vector as the Q-bias vector and learns its difference from the actual Q-value vector via its DQN. With different agents learning distributedly, both the peak and sum costs are reduced as the joint offloading decision could start from a near-local-optimal point. In simulations, our robust approach successfully reduces the peak cost and sum cost by up to 50% and 30%, respectively. This demonstrates the need for a robust learning algorithm design in a practical dynamic MEC network. ? 1983-2012 IEEE.
Subjects
deep Q learning
hierarchical learning
latency
mobile edge computing
network topology
offloading
Resource allocation
robustness
Cost reduction
Decision making
Deep neural networks
E-learning
Learning algorithms
Reinforcement learning
Topology
Deep Q learning
Hierarchical learning
Latency
Network topology
Offloading
Q-learning
Q-values
Resources allocation
Robustness
User equipments
Mobile edge computing
SDGs

[SDGs]SDG3

[SDGs]SDG11

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science