Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Performance enhancement of organic/inorganic hybrid solar cells by improving the optical absorption of polymer
 
  • Details

Performance enhancement of organic/inorganic hybrid solar cells by improving the optical absorption of polymer

Journal
Proceedings of SPIE - The International Society for Optical Engineering
Journal Volume
7416
Date Issued
2009
Author(s)
Huang, J.-S.
Chou, C.-Y.
Liu, M.-Y.
Wu, C.-H.
Lin, Y.-H.
Lin, W.-H.
CHING-FUH LIN  
DOI
10.1117/12.825970
URI
http://www.scopus.com/inward/record.url?eid=2-s2.0-70449578492&partnerID=MN8TOARS
http://scholars.lib.ntu.edu.tw/handle/123456789/350127
Abstract
The performance of the polymer/ZnO nanorod hybrid solar cells based on poly(3-hexylthiophene) and methanofullerenes is improved with the enhanced optical absorption by increasing the thickness of the photoactive layer and introducing a solution-processed interlayer. The dependence of the optical absorption on the thickness of the photoactive layer is studied as a function of the spin-coating rate. With the slower spin-coating rate, the photoactive layer is thicker, and the polymer chains have longer time to self-organize and more effectively infiltrate into ZnO nanorod spacing. In addition, a solution-processed fullerene interlayer is introduced to modify the ZnO nanorod surface. With this interlayer, the optical absorption of the photoactive layer increases due to the better ordering of the photoactive layer. Our investigations show that the power conversion efficiency (PCE) is improved from 1.6% to 2.6% with the thickness of the photoactive layer from 240 nm to 350 nm by slowing the spin coating rate of the photoactive layer. Moreover, the PCE is also improved by the fullerene interlayer. The slow-drying method and the solution-processed fullerene interlayer both improve the crystallinity of the polymer and light harvesting. © 2009 SPIE.
Subjects
Fullerene; Optical absorption; Organic/inorganic hybrid solar cell; Slow drying; ZnO nanorod
SDGs

[SDGs]SDG7

Other Subjects
Crystallinities; Drying methods; Hybrid solar cells; Light-harvesting; Methanofullerenes; Optical absorption; Organic/inorganic hybrid solar cell; Organic/Inorganic hybrids; Performance enhancements; Photoactive layers; Poly (3-hexylthiophene); Polymer chains; Power conversion efficiencies; Self-organize; Slow drying; Solution-processed; ZnO nanorod; Absorption; Conversion efficiency; Dewatering; Fullerenes; Light absorption; Nanorods; Photovoltaic cells; Photovoltaic effects; Plastic coatings; Polymers; Semiconducting zinc compounds; Spin dynamics; Zinc oxide; Solar cells
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science