Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Development of a Novel Semi-Active Micromixer
 
  • Details

Development of a Novel Semi-Active Micromixer

Date Issued
2006
Date
2006
Author(s)
Chang, Chih-Hsiang
DOI
zh-TW
URI
http://ntur.lib.ntu.edu.tw//handle/246246/61217
Abstract
The purpose of this essay is to propose a novel micro-mixer. The structure of the proposed mixer is as simple as that of the traditional passive mixer. Furthermore, the working flow of this assay is a kind of controllable nano-magnetic fluids therefore it can be twisted or squeezed like a magnetic rod once an external magnetic field is applied. To combine the advantages mentioned above, instead of an active mixer, an external magnet is employed in our research. With the simple dragonfly type of micro-fluidic channel, the fluid can be formed as the droplet shape by this passive structure. The oil-based agent magnetic working fluid is magnetized to squeeze the droplets and enhance the mixing efficiency. This type of mixer is called a “Semi-Active Micromixer”. First we focus on the refinement of the agent of nano-magnetic fluids. The results show that different experimental environments have effects on the characteristics of the fluid by using Taguchi method. Three controlled parameters, the way of pouring, the way of heating, and the modification of the Ammonium Oil acid are tested for the experiments. The optimal conditions are as follows. (1). Use Fe ionized solution to titrate the sodium hydroxide solution. (2). Stir the mixing fluid at 90 oC. (3). Adopt 5 mg: 5 mg as the proportion of oleic acid and ammonia. The magnetization is 0.96emu/g for optimal water-based magnetic fluids of 0.05M. The magnetization is 7.98emu/g, 6.56emu/g and 4.73emu/g for oil-based magnetic fluids of 0.5M, 0.25M, 0.125M respectively at the external magnetic filed of 13500 Oe. All the ferrofluids illustrates the characteristic of superparamagnety. The MEMS process and soft lithography technique were employed to fabricate the micro-mixer device.The final results of the experiments focus on the mixing efficiency of the novel mixer. The oil-based magnetic fluid, transparent DI water and the blue dye are injected through the inlets respectively. The resultes show that: (1).The mixing uniformaity is more stable as closer to the end the microchannel when the same concentration of the magnetic fluid is applied. (2).The mixing is more uniform when stronger magnetic field is applied. (3).The mixed fluid is more uniform when the concerntration of the magnetic fluid is higher.
Subjects
田口參數設計
奈米磁性流體
混合器
微機電製程
微流體晶片
Taguchi method
Magnetic fluids
Mixer
MEMS process
Microfluidic chip.
Type
thesis

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science