Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Communication Engineering / 電信工程學研究所
  4. The Stability Theory and Design of Two-Dimensional Recursive Digital Filters and Recursive Digital Lattice Filters
 
  • Details

The Stability Theory and Design of Two-Dimensional Recursive Digital Filters and Recursive Digital Lattice Filters

Date Issued
2016
Date
2016
Author(s)
Du, Jiun-Shian
DOI
10.6342/NTU201603220
URI
http://ntur.lib.ntu.edu.tw//handle/246246/276735
Abstract
A two-dimensional (2-D) digital allpass filter (DAF) has a property of varying only phase with constant magnitude and it has mainly been used as a phase compensator for distorted signals. It is a structure that has some desirable attributes such as low complexity and low coefficient quantization error. It also can be used to design a wide range of filtering functions. In this doctoral dissertation, we present the monotone phase-response property of a two-dimensional (2-D) causal digital allpass filter (DAF) with real coefficients or complex coefficients in the quarter-plane (QP) support region. Regarding the circumstance of real coefficients, we also prove that the previously proposed bounded-input bounded-output (BIBO) stability criterion on the viewpoint of unwrapped phase is necessary and sufficient for 2-D separable DAFs, but is only sufficient for QP DAFs. The resultant property possesses the advantage of increasing the freedom of phase design over the previously proposed one. A remarkable application of the presented property is choosing an appropriate specification for the desired phase response of a 2-D QP DAF design. A 2-D nonsymmetric half-plane (NSHP) recursive DAF possesses more general causality and performs better than a 2-D quarter-plane (QP) recursive DAF. Hence, we also present the phase-response property for the BIBO stability of a 2-D causal recursive DAF with NSHP support region. Both cases of filters with real coefficients and complex coefficients are explored. Moreover, the effect of the numerator polynomial of a 2-D NSHP DAF on stability is also considered. The presented phase-response property has several applications. A remarkable application is that it can be utilized to enforce stability for a 2-D NSHP DAF design by choosing an appropriate phase specification. The eigenfilter design of 2-D NSHP DAFs for this application is also presented. The 1-D lattice filter structure exhibits the attractive advantages of low passband sensitivity and robustness to quantization error. The modularity of this structure makes industrial application. Additionally, 1-D digital lattice filter structure requires lower computational cost than 1-D direct form digital filter. The filter coefficients of 1-D direct-form allpass filter and the reflection coefficients of 1-D lattice allpass filter have a one-to-one mapping relationship. However, 2-D lattice allpass structures always do not have this relationship. Hence, we present a lattice structure for the realization of 2-D recursive DAFs with general causality. We employ four basic lattice sections to realize 2-D recursive DAFs with wedge-shaped coefficient support region like a NSHP support region. Two variations of the 2-D lattice structure are also presented. We use the Roesser state space model to verify the minimal realization of the proposed 2-D recursive lattice DAF. We present a least-squares design technique and a minimax design technique to solve the nonlinear optimization problems of the proposed 2-D lattice DAF structure. The novelty of the presented lattice structure is that it not only inherits the desirable attributes of 1-D Gray-Markel lattice allpass structure but also possesses the advantage of better performance over the existing 2-D lattice allpass structures. Then, we present a parallel-combination structure composed of the 2-D lattice DAFs for the design of 2-D recursive filters. The novelty of the 2-D recursive filter is that it not only inherits the desirable attributes of lattice filters but also possesses the advantage of better performance over the 2-D recursive NSHP filters.
Subjects
Digital allpass filter (DAF)
quarter-plane (QP)
BIBO stability
unwrapped phase response
2-D recursive filter
nonsymmetric half-plane (NSHP)
lattice structure
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-105-D97942027-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):5ddbe2c31eadc4f312abed9ec995b8a9

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science