Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Photonics and Optoelectronics / 光電工程學研究所
  4. Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics
 
  • Details

Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics

Journal
Progress in Photovoltaics
Journal Volume
22
Journal Issue
4
Pages
452-461
Date Issued
2014
Author(s)
Chen, Ting-Gang
Yu, Peichen
Chen, Shih-Wei
Chang, Feng-Yu
Huang, Bo-Yu
Cheng, Yu-Chih
Hsiao, Jui-Chung
Li, Chi-Kang
YUH-RENN WU  
DOI
10.1002/pip.2291
URI
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000332987900007&KeyUID=WOS:000332987900007
http://scholars.lib.ntu.edu.tw/handle/123456789/384958
Abstract
Nanostructured crystalline silicon is promising for thin-silicon photovoltaic devices because of reduced material usage and wafer quality constraint. This paper presents the optical and photovoltaic characteristics of silicon nanohole (SiNH) arrays fabricated using polystyrene nanosphere lithography and reactive-ion etching (RIE) techniques for large-area processes. A post-RIE damage removal etching is subsequently introduced to mitigate the surface recombination issues and also suppress the surface reflection due to modifications in the nanohole sidewall profile, resulting in a 19% increase in the power conversion efficiency. We show that the damage removal etching treatment can effectively recover the carrier lifetime and dark current-voltage characteristics of SiNH solar cells to resemble the planar counterpart without RIE damages. Furthermore, the reflectance spectra exhibit broadband and omnidirectional anti-reflective properties, where an AM1.5 G spectrum-weighted reflectance achieves 4.7% for SiNH arrays. Finally, a three-dimensional optical modeling has also been established to investigate the dimension and wafer thickness dependence of light absorption. We conclude that the SiNH arrays reveal great potential for efficient light harvesting in thin-silicon photovoltaics with a 95% material reduction compared to a typical cell thickness of 200 μm. Copyright © 2012 John Wiley & Sons, Ltd. This paper presents the optical and photovoltaic characteristics of silicon nanohole arrays fabricated using polystyrene nanosphere lithography and reactive-ion etching techniques for large-area processes. A damage removal etching is subsequently introduced to mitigate the surface recombination issues and also suppress the surface reflection due to modifications in the nanohole sidewall profile, resulting in a 19% increase in the power conversion efficiency. Silicon nanohole arrays reveal great potential for efficient light harvesting in thin-silicon photovoltaics. © 2014 John Wiley & Sons, Ltd.
Subjects
anti-reflection; photovoltaic; solar cells; sub-wavelength structures
SDGs

[SDGs]SDG7

Other Subjects
Reactive ion etching; Reflection; Silicon; Silicon wafers; Solar cells; Anti-reflection; Photovoltaic; Photovoltaic characteristics; Polystyrene nanospheres; Power conversion efficiencies; Reflectance spectrum; Sub-wavelength structures; Surface recombinations; Nanostructured materials
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science