Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Management / 管理學院
  3. Finance / 財務金融學系
  4. 最大平滑度遠期利率曲線配適模型之再探討
 
  • Details

最大平滑度遠期利率曲線配適模型之再探討

Journal
中國財務學刊
Journal Volume
6
Journal Issue
1
Pages
45-75
Date Issued
1998
Author(s)
李賢源  
林慧貞
DOI
10.6545/JoFS.1998.6(1).2
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/414583
Abstract
最大平滑度遠期利率曲線配適模型,係指以最大平滑度為目標函數、債券價格為限制條件求解遠期利率函數之方法,以Adams and Deventer(1994)為代表。本文第一部份旨在對此配適方法之理論性質做進一步之探討,指出原模型在求解上之問題、及其參數估計值對條件式之選取具相當敏感之性質,進而分析該模型適用之樣本型態,並提出另一種找尋適當條件式之方法,以擴大此模型之適用範圍;此外,亦將Adams and Deventer模型作不同角度之擴展,如修改最大平滑度之定義、以附息債券資料取代原模型採用之零息債券資料、及最適之遠期利率函數可否為多項式以外之函數型態等探討;最後並將此種配適方法應用於配適一條平滑之殖利率曲線。本文第二部份則對Adams and Deventer模型進行實證研究,分別利用票券、臺幣利率交換、及政府債券資料配適遠期利率曲線,並以利率交換資料配適殖利率曲線。Adams and Deventer (1994) showed a model for fitting forward rate curves which are solved by using the maximum smoothness as the objective function and the observed bond prices as the constrained conditions. The first part of this paper provides further study on the theoretical essence of Adams and Deventer's model. We find that the parameters of the forward rate function are very sensitive to the constrained conditions and not all of the samples are suited for the conditions suggested by Adams and Deventer. As for these samples, an approach for finding advisable conditions is introduced in this paper. In order to test if the original specifications are the best. some revisions are tried. such as changing the definition of maximum smoothness, using coupon bond data instead of zero-co upon bond data, and trying the possibility of other forward rate functional forms. Furthermore, this model is extended to the application of fittingyield curves. The second part is made up of empirical studies. Adams and Deventer's model is applied to fit the forward rate curves by using the short-term bill. interest rate swaps, and government bond data in the Taiwan market: the interest rate swap data is also used to fit the yield curves in the way derived in this paper.
Subjects
存續期限調整法
逐步嵌入估計法
最大平滑度
殖利率曲線
零息債券調整法
遠期利率曲線
duration adjustment method
forward rate curves
maximum smoothness
spline method
yield curves
zero-coupon adjustment method
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science