Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. A Probabilistic Predictive Model for Foundation Settlement on Liquefiable Soils Improved with Ground Densification
 
  • Details

A Probabilistic Predictive Model for Foundation Settlement on Liquefiable Soils Improved with Ground Densification

Journal
Journal of Geotechnical and Geoenvironmental Engineering
Journal Volume
148
Journal Issue
5
Start Page
4022017
ISSN
10900241
Date Issued
2022
Author(s)
YU-WEI HWANG  
Bullock, Zach
Dashti, Shideh
Liel, Abbie
DOI
10.1061/(ASCE)GT.1943-5606.0002768
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-85125619708&origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/720936
Abstract
In this paper, we present a probabilistic predictive procedure for a foundation's permanent average settlement on liquefiable soils improved with ground densification. The proposed procedure is based on 770 three-dimensional (3D), fully coupled, effective-stress, finite-element analyses designed through quasi-Monte Carlo sampling of key input parameters. The numerical models are themselves calibrated and validated with centrifuge model studies, and they consider realistic, nonlinear, 3D structures on shallow foundations, seismic soil-structure interaction, interlayering and layer cross interactions, ground densification properties and geometry, and ground motion characteristics. We use nonlinear regression with lasso-type regularization to estimate model coefficients. The primary predictors of a foundation's settlement are identified as the cumulative absolute velocity of the outcropping rock motion; total thickness of the soil deposit above bedrock and cumulative thickness of the critical liquefiable layer(s); the foundation's bearing pressure, size, and embedment depth; the structure's total height; the achieved density and size of ground improvement; and the thickness of the remaining undensified susceptible soils within the foundation's influence zone. In the end, the predictive model is shown to capture the trends in a limited number of centrifuge and field case histories collected from the literature. The insight from the numerical database and the first-of-its-kind predictive model aims to guide the design of liquefaction mitigation strategies that improve the performance of the soil-foundation-structure system holistically and reliably. © 2022 American Society of Civil Engineers.
Subjects
Centrifuge modeling
Finite-element analysis
Ground densification
Liquefaction
Machine learning
Mitigation
Settlement
Soil-structure interaction
Statistical analysis
Publisher
American Society of Civil Engineers (ASCE)
Description
論文編號: 4022017
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science