Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Symbolic gas vulnerability detection and attack synthesis
 
  • Details

Symbolic gas vulnerability detection and attack synthesis

Journal
Proceedings of the 24th Pacific Asia Conference on Information Systems: Information Systems (IS) for the Future, PACIS 2020
Date Issued
2020
Author(s)
Peng M.H
Yu F
JIE-HONG JIANG  
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089125534&partnerID=40&md5=aec2d775cfabb2acff5dc1a5a4e487d9
https://scholars.lib.ntu.edu.tw/handle/123456789/580983
Abstract
Successful executions of smart contracts require sufficient pre-allocated transaction fees, i.e., gas, on Ethereum. A gas vulnerability is a feasible execution of smart contracts that has its gas consumption depending on external inputs, e.g., used to check loop conditions or to calculate gas formulas. Such gas vulnerabilities may be exploited to raise massive gas consumption that leads the execution to unexpected exceptions. In this work, we propose an instruction-level symbolic stack simulation approach for systematic gas vulnerability detection and attack synthesis. The analysis process consists of 1) a sound control flow graph construction with blocks that are associated with their gas formulas and stack states, 2) symbolic execution path enumeration along with path and gas constraints generation, where loops are symbolically encoded with an auxiliary index for the number of iterations, and 3) gas vulnerability detection and its attack synthesis. To synthesize an attack to exploit the vulnerability, we use the sat model returned by an SMT solver to generate the inputs to trigger the execution that exceeds the gas limit. We report our analysis results against various contracts on Etherscan and In-house development cases, revealing previously unknown vulnerabilities in these contracts. ? Proceedings of the 24th Pacific Asia Conference on Information Systems: Information Systems (IS) for the Future, PACIS 2020. All rights reserved.
Subjects
Data flow analysis; Flow graphs; Information systems; Information use; Analysis process; Control flow graphs; In-house development; Instruction-level; Number of iterations; Simulation approach; Symbolic execution; Vulnerability detection; Gases
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science