Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. An Optimal Algorithm for the Maximum-Density Segment Problem.
 
  • Details

An Optimal Algorithm for the Maximum-Density Segment Problem.

Journal
Algorithms - ESA 2003, 11th Annual European Symposium, Budapest, Hungary, September 16-19, 2003, Proceedings
Pages
136-147
Date Issued
2003
Author(s)
Chung, Kai-Min
HSUEH-I LU 
DOI
10.1007/978-3-540-39658-1_15
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0142152742&doi=10.1007%2f978-3-540-39658-1_15&partnerID=40&md5=d605d49b13a42c01940c55e69533f4bb
URL
https://doi.org/10.1007/978-3-540-39658-1_15
Abstract
We address a fundamental string problem arising from analysis of biomolecular sequences. The input consists of two integers L and U and a sequence S of n number pairs (ai, wi) with Wi > 0. Let segment S(i,j) of S be the consecutive subsequence of S starting index i to index j. The density of S(i, j) is d(i,j) = (ai + a i+1 + ... + aj)/(wi + Wi+1 + ... + Wj). The maximum-density segment problem is to find a maximum-density segment over all segments of S with L ≤ wi+wi+1+ ...+wj ≤ U. The best previously known algorithm for the problem, due to Goldwasser, Kao, and Lu, runs in O(n log(U-L+1)) time. In the present paper, we solve the problem in O(n) time. Our approach bypasses the complicated right-skew decomposition, introduced by Lin, Jiang, and Chao. As a result, our algorithm has the capability to process the input sequence in an online manner, which is an important feature for dealing with genome-scale sequences. Moreover, for an input sequence S representable in O(k) space, we also show how to exploit the sparsity of S and solve the maximum-density segment problem for S in O(k) time. © Springer-Verlag 2003.
Other Subjects
Algorithms; Biomolecular sequences; Important features; Input sequence; Maximum-density segment; Optimal algorithm; Problem solving
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science