Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Design and implementation of a stepped air-gap inductor for buck converters
 
  • Details

Design and implementation of a stepped air-gap inductor for buck converters

Journal
Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC
Pages
875-880
Date Issued
2021
Author(s)
Liu Y.-C
Tsai M.-C
Chen Y.-J
KATHERINE ANN KIM  
Chen C
Dung N.A.
DOI
10.1109/APEC42165.2021.9487053
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115688078&doi=10.1109%2fAPEC42165.2021.9487053&partnerID=40&md5=61ae66912a5830437147c6dc1bd35203
https://scholars.lib.ntu.edu.tw/handle/123456789/632431
Abstract
This paper proposes the design and implementation of an inductor with a stepped air-gap for a buck converter with improved feedback control. Typically, a power converter needs to maintain stable operation during any load transient. When designing the compensator for a converter according to the traditional method for continuous conduction mode (CCM), the same compensator is employed from light load to full load, which leads to poor response at some operating points, especially at light load. To achieve a better system response, a stepped air-gap inductor is proposed to increase the inductance at light load, which is analyzed and compared with a traditional inductor. The proposed stepped air-gap inductor reduces the influence of the magnetic flux leakage on the winding. The effect of having two different inductance values on the controller design is discussed, and the conditions for discontinuous conduction mode (DCM) at light load with the stepped air-gap inductor are outlined. A 48-V to 12-V buck converter rated for 60 W is built and tested to verify the proposed stepped air-gap inductor. With the proposed stepped air-gap inductor, experimental results show that undershoot and overshoot were improved 50% and settling time was decreased to 20% and 30% during light-to-full load transients, compared to the traditional inductor. Hence, the proposed stepped air-gap inductor can effectively improve system response. © 2021 IEEE.
Subjects
Buck converter; Inductor design; Light load; Magnetic components; Stepped air-gap inductor
Other Subjects
DC-DC converters; Electric inductors; Energy conversion; Inductance; Magnetic devices; Magnetic leakage; Power electronics; Air-gaps; Buck converters; Design and implementations; Full-load; Inductor design; Lightload; Load transients; Magnetic components; Stepped air-gap inductor; System response; Buck converter
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science