Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. National Taiwan University Hospital / 醫學院附設醫院 (臺大醫院)
  4. Untargeted Swab Touch Spray-Mass Spectrometry Analysis with Machine Learning for On-Site Breast Surgical Margin Assessment.
 
  • Details

Untargeted Swab Touch Spray-Mass Spectrometry Analysis with Machine Learning for On-Site Breast Surgical Margin Assessment.

Journal
Analytical chemistry
Journal Volume
97
Journal Issue
4
Start Page
1960
End Page
1965
ISSN
1520-6882
Date Issued
2025-02-04
Author(s)
Chai, Laura Min Xuan
Kao, Ching
MING-YANG WANG  
CHENG-CHIH HSU  
DOI
10.1021/acs.analchem.4c06062
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/725649
Abstract
Direct sampling mass spectrometry (MS) has rapidly advanced with the development of ambient ionization MS techniques. Swab touch-spray (TS)-MS has shown promise for rapid clinical diagnostics. However, commercially available swabs are notorious for their high background signals, particularly in the positive ionization mode. Although changes to MS methods or precleaning of the swabs can serve as workarounds, this inherent issue still limits the clinical application of swab TS-MS. In this study, we report the use of the sterile-packaged OmniSwab as an alternative material for untargeted swab TS-MS analysis. As a proof of concept, breast surgical margins were swabbed during surgeries and analyzed using a compact mass spectrometer within the hospital. Subsequently, various machine learning algorithms were applied to the acquired MS spectra to determine the optimal model for classifying margins as normal or tumor. The Least Absolute Shrinkage and Selection Operator (LASSO) model yielded the highest prediction performance, with accuracies exceeding 90% in both testing and validation data sets. Notably, three out of four surgical margins involved with cancer cells were accurately identified. The entire workflow, from swab TS-MS analysis to margin prediction, can be completed within 5 min with high accuracy, demonstrating the feasibility of swab TS-MS to assist intraoperative decision-making.
SDGs

[SDGs]SDG3

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science