Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. Evaluating the contribution of multi-model combination to streamflow hindcasting by empirical and conceptual models
 
  • Details

Evaluating the contribution of multi-model combination to streamflow hindcasting by empirical and conceptual models

Journal
Hydrological Sciences Journal
Journal Volume
62
Journal Issue
9
Pages
1456-1468
Date Issued
2017
Author(s)
Chiang, Yen-Ming
Hao, Ruo-Nan
HAO-CHE HO  
TSANG-JUNG CHANG  
DOI
10.1080/02626667.2017.1330543
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/435945
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020194318&doi=10.1080%2f02626667.2017.1330543&partnerID=40&md5=9680739a51a297b7518c4deab6900f4a
Abstract
The contribution of multi-model combination to daily streamflow hindcasting was evaluated through the HBV (Hydrologiska Byr?ns Vattenbalansavdelning) and RNN (recurrent neural networks) models with 100 ensemble members generated with different initial conditions for both. In the calibration phase, the analysis showed that the HBV and RNN models with 20 members have better accuracy and require less calibration time. The combination of two models, however, did not provide significant improvements when 80 more members were added in the combination. In the validation phase, the results indicated that both HBV and RNN models with 20 members not only accurately produce reliable and stable streamflow hindcasting, but also effectively simulate the timing and the value of peak flows. From the consistency of calibration and validation results, the study provides an important contribution, namely, that ensemble size is not sensitive to the type of hydrological model in terms of streamflow hindcasting. ? 2017 IAHS.
SDGs

[SDGs]SDG3

Other Subjects
Hydrology; Neural networks; Recurrent neural networks; Stream flow; Calibration and validations; Calibration time; Ensemble averaging; Ensemble members; Hydrological modeling; Initial conditions; Multi-model combination; Validation phase; Calibration; artificial neural network; conceptual framework; empirical analysis; ensemble forecasting; hindcasting; hydrological modeling; peak flow; streamflow; Hepatitis B virus
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science