Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Development of High Precision Nanometer Level Co-planar Stage
 
  • Details

Development of High Precision Nanometer Level Co-planar Stage

Date Issued
2014
Date
2014
Author(s)
Wang, Hung-Yu
URI
http://ntur.lib.ntu.edu.tw//handle/246246/263297
Abstract
With the continuing trend toward device miniaturization in many engineering and scientific fields, the need to accomplish highly-precise stage at the micro- or nanoscale has emerged as a critical concern. This research presents a series of key technologies with nanometer level co-planar X-Y stages including Abbe free co-planar stage development, robust motion control scheme, high-resolution sensor, real-time signal correction and subdivision, positioning error calibration and error compensation system established. For the driving resolution and efficiency, as well as the simplification requirement, a piezoelement-based ultrasonic motor HR4 (Nanomotion Co.) is employed in this study. The motor drive provides three main driving modes, namely AC, Gate and DC, for millimeter, micrometer and nanometer displacements, respectively. To compensate for the effects of the variable friction force during stage motion, the gains of the PID controller used to regulate the stage motion are tuned adaptively by a self-tuning neuro-PID based on the feedback signals. The positioning accuracy of the proposed system is evaluated by performing large and small stroke and a series of contouring experiments. The 3rd generation of co-planar stage, the displacement of each axis stage is sensed using a linear diffraction grating interferometer (LDGI) with a nanometer resolution. Furthermore, to obtain a high accuracy positional motion, the error compensation strategy is implemented to eliminate the systematic errors of the stage with error budget. The error budget is obtained by positioning error calibration using a laser interferometer, which optical axis is detected by a quadrant photodetector (QPD) to ensure no cosine error. The positioning error can be controlled to ±20 nm with standard deviation 12 nm after implementing error compensation. In the modified co-planar stage, the x- and y-axis coordinates are measured using the MDFMS which comprising a wavelength-corrected Michelson interferometer, a dual-axis autocollimator and wavelength compensator. In order to meet the requirement for a nanometer level measurement, the method for straightness of mirror in Michelson interferometer and alignment procedures have been developed. Moreover, a mathematical model for real time wavelength correction has been proposed and experimental results show that the MDFMS has a normalized wavelength stability of less than 10-6. Importantly, the MDFMS not only enables the x- and y-axis coordinates to be measured with a nanoscale precision, but also enables the pitch and yaw errors of each axis to be detected such that the Abbe errors in the z-direction can be compensated. Moreover, the autocollimator has an accuracy of ± 0.3 arc-sec over the range of ± 30 arc-sec. Besides, the performance of a high-precision co-planar stage is extremely sensitive to the effects of volumetric accuracy. In the modified co-planar stage, this 6-DOF capability can measure the positioning error, straightness error, squareness error and angular errors of the X and Y motions. In addition, the shape error of the mirror can also be separated by using two MDFMS. The volumetric error compensation can also be done automatically. The results demonstrate that the co-planar stage achieves a nanometer level of accuracy and resolution and is therefore a suitable solution for micro-CMM, micro-lithography and micro-machining applications.
Subjects
共平面平台
阿貝誤差
自調式類神經控制
線性繞射光柵干涉儀
多自由度量測系統
即時波長補償
誤差補償
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-103-D96522010-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):9118d15d45c5c996a0955230d640e291

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science