Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Geography / 地理環境資源學系
  4. Effects of terrigenous organic substrates and additional phosphorus on bacterioplankton metabolism and exoenzyme stoichiometry
 
  • Details

Effects of terrigenous organic substrates and additional phosphorus on bacterioplankton metabolism and exoenzyme stoichiometry

Journal
Freshwater Biology
Journal Volume
65
Journal Issue
11
Pages
1973-1988
Date Issued
2020
Author(s)
Yeh T.-C
Krennmayr K
Liao C.-S
Ejarque E
Schomakers J
JR-CHUAN HUANG  
Zehetner F
Hein T.
DOI
10.1111/fwb.13593
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087759864&doi=10.1111%2ffwb.13593&partnerID=40&md5=305b61165a6468c12dec1a55b60973f6
https://scholars.lib.ntu.edu.tw/handle/123456789/571775
Abstract
Bamboo, as a pioneer vegetation, often forms forests on bare lands after catastrophic landslides. Compared to evergreen forest soil, bamboo forest soil is much more labile, with a higher percentage of microbially derived organic carbon (OC), lower molecular weight, and lower humic acid content. We hypothesised that different terrigenous organic matter (tOM) sources with varying lability and phosphorus (P) availability select for bacterioplankton with distinct metabolic pathways. We incubated natural bacterioplankton assemblages with tOM leached from bamboo forest soil (BOM) and evergreen forest soil (EOM) and compared these to a lake water control. To test if microbial metabolism would be limited by OC or P availability of each tOM treatment, we used acetate as an extra labile OC source and phosphate as an inorganic P source. Bacterial metabolism was measured by analysing respiration via O2 consumption and production via tritiated thymidine (TdR) assimilation. Bacterioplankton metabolism is limited by the availability of P in BOM substrates. When using BOM, bacteria had higher enzymatic activities for phosphatase. The nutrients required for bacterial biomass seemed to be derived from organic matter. Under BOM treatment, bacterial production (BP) (0.92 ± 0.13 μg C L−1 hr−1) and cell specific TdR assimilation rates (0.015 ± 0.002 10–18 M TdR cell−1 hr−1) were low. Adding P enhanced BP (BOM+P 1.52 ± 0.31 and BOM+C+P 2.25 ± 0.37 μg C L−1 hr−1) while acetate addition had no significant effect on BOM treatment. This indicated that the bacteria switched to using added inorganic P to respire a P-limited BOM substrate, which increased total BP and abundance, resulting in even more active respiration and lower growth efficiency. We also found higher activities for chitin-degrading enzyme β-N-acetylglucosaminidase, which is associated with N mining from aminosaccharides. Microbes using EOM, however, did not change metabolic strategies with additional acetate or/and inorganic P. This is due to higher concentrations of organic P in EOM substrates and the presence of inorganic N in the EOM leachates an alternative nutrient source. Bacteria produced β-glucosidase and leucyl-aminopeptidase in order to utilise the humic substances, which sustained greater bacterial abundance, higher BP (2.64 ± 0.39 μg C L−1 hr−1), and lower cell-specific respiration. This yielded a much higher bacterial growth efficiency (15 ± 9.2%) than the lake water control. Our study demonstrated the aquatic metabolic discrepancy between tOM of different forest types. Bacterioplankton in BOM and EOM exhibit distinct metabolic responses. Bacterial metabolic strategy when using BOM implied that the supposedly stabilised biomass OM might be efficiently used by aquatic bacterioplankton. As the labile and nutrient-deficient BOM is more susceptible to the influence of additional nutrients, fertiliser residues in bamboo forest catchments might have a stronger effect on aquatic bacterial metabolic pathways. Thus, it is important to take tOM differences into consideration when building models to estimate soil carbon turnover rates along a terrestrial–aquatic continuum. © 2020 The Authors. Freshwater Biology published by John Wiley & Sons Ltd.
Subjects
aquatic metabolism; bamboo forest soil; evergreen forest soil; laboratory experiment; terrigenous organic matter
SDGs

[SDGs]SDG2

[SDGs]SDG6

[SDGs]SDG13

[SDGs]SDG14

[SDGs]SDG15

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science