Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Environmental Engineering / 環境工程學研究所
  4. Iron sulfide minerals as potential active capping materials for mercury-contaminated sediment remediation: A minireview
 
  • Details

Iron sulfide minerals as potential active capping materials for mercury-contaminated sediment remediation: A minireview

Journal
Sustainability (Switzerland)
Journal Volume
11
Journal Issue
6
Date Issued
2019-01-01
Author(s)
Ting, Y.
HSING-CHENG HSI  
DOI
10.3390/su11061747
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/425136
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063449338&doi=10.3390%2fsu11061747&partnerID=40&md5=40a24410feab51fa509308a41bbb46d3
URL
https://api.elsevier.com/content/abstract/scopus_id/85063449338
Abstract
© 2019 by the authors. Several innovative approaches have been proposed in recent years to remediate contaminated sediment to reduce human health and environmental risk. One of the challenges of sediment remediation stems from its unfeasible high cost, especially when ex situ strategies are selected. Therefore, in situ methods such as active capping have been emerging as possible options for solving sediment problems. Active capping methods have been extensively tested in field-scale sediment remediation for organic pollutants (e.g., PCBs, PAHs, DDT) contamination with good sequestration efficiency; however, these methods have not been widely tested for control of heavy metal pollutants, such as mercury (Hg). In this review, the potentials of using iron sulfide minerals to sequestrate Hg were discussed. Iron sulfide minerals are common in the natural environment and have shown good effectiveness in sequestrating Hg by adsorption or precipitation. Iron sulfides can also be synthesized in a laboratory and modified to enhance their sequestration ability for Hg. Some of the potential advantages of iron sulfides are pointed out here. Additional tests to understand the possibility of applying iron sulfides as active caps to remediate complicated environment systems should be conducted.
Subjects
Active capping | Iron sulfide | Mercury | Sediment remediation
Active capping; Iron sulfide; Mercury; Sediment remediation
SDGs

[SDGs]SDG3

Other Subjects
adsorption; environmental risk; iron sulfide; mercury (element); organic pollutant; pollutant removal; public health; sediment capping; sediment pollution
Publisher
MDPI
Type
review
File(s)
Loading...
Thumbnail Image
Name

sustainability-11-01747.pdf

Size

1.18 MB

Format

Adobe PDF

Checksum

(MD5):d82880525126f5835bece8c4e896c708

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science