Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Object Location Prediction Based on Motion Estimation with Application on Color-Based Foreground Object Detection
 
  • Details

Object Location Prediction Based on Motion Estimation with Application on Color-Based Foreground Object Detection

Date Issued
2007
Date
2007
Author(s)
Chiang, Ching-Chun
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/53294
Abstract
Many computer vision and machine vision applications employ some foreground detection methods as the first stage for detecting object location. Many characteristics of image data have been used to segment images into background and foreground elements. Motion is effective information for detecting moving objects in two continuous images. Although motion is helpful to detect foreground objects, it requires a heavy computational load when detecting all motions of an image. In previous applications, some fast search algorithms are proposed to reduce the computational load of motion estimation. In fact, not all motions are important in an image. Only the foreground object motion is required in a foreground detection system. The background motion is not necessary for detecting foreground, and it means that the motion estimation process has no need to be applied in the background area. In this research, a method is proposed for predicting foreground object location in a video. The method uses both motion and traffic density to predict object location in an input image. Motion is obtained by motion estimation, and traffic density is obtained by the analysis of historical detection results. A program of foreground detection is designed to verify the prediction method. The prediction capabilities with moving and size-changing object are explained by the experiments with some special videos. Finally, the advantages of using the prediction method are illustrated through the experiment with three different input videos.
Subjects
前景偵測
物體位置預測
影像處理
影像分析
foreground detection
object location prediction
image processing
image analysis
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-96-J93921001-1.pdf

Size

23.31 KB

Format

Adobe PDF

Checksum

(MD5):8a19976235cc9b7f658655d74549c7fa

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science