Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Geosciences / 地質科學系
  4. Capatibility Conditions for the Kinematics of Subduction
 
  • Details

Capatibility Conditions for the Kinematics of Subduction

Date Issued
2006
Date
2006
Author(s)
Peng, Cheng-Chien
DOI
zh-TW
URI
http://ntur.lib.ntu.edu.tw//handle/246246/54845
Abstract
Plate kinematics on the surface of the Earth has been described successfully by the Eulerian rotation without intraplate deformation. It is, however, difficult to specify the kinematics of the lithosphere subduction. Connected with the surface plate velocity across the pivot axis, the trench, the velocity vector field of the subducted slab had been conventionally defined by simply rotating the surface Eulerian kinematics with respect to the local strike onto the slab surface. It usually results in unrealistic in-plane deformation rates within the slab surface. Alternatively, the flow field as well as the observed slab geometry can be shown to be natural consequences of attaining the kinematic field with the minimum dissipation power. The dependence of the deformation rates, associated with such flow field as defined following the minimization, upon the intrinsic geometry of the non-Euclidean surface is, however, implicit and opaque. We derive, in this study, the fundamental compatibility equation of the strain-rates tensor for the subduction flow field to highlight the fundamental dependency. There are two factors; one is associated with the variation of the Gaussian curvature along the stream lines. The other is the local compressibility amplified by the in situ Gaussian curvature. We discuss the implications of these factors and point out that to delineate the potential membrane deformation rates of the subducted slab, unambiguous information on the subduction kinematics is essential in addition to mapping the Gaussian curvature variation of the subducted slab.
Subjects
隱沒板塊
應變相容方程式
subduction
compatibility equations
Gaussian curvature
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-95-R93224209-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):c653f46fb56102e363d8d58405612d85

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science