Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Electrostatic Potential Optimized Molecular Models for Molecular Simulations: CO, CO2, COS, H2S, N2, N2O, and SO2
 
  • Details

Electrostatic Potential Optimized Molecular Models for Molecular Simulations: CO, CO2, COS, H2S, N2, N2O, and SO2

Journal
Journal of Chemical Theory and Computation
Journal Volume
15
Journal Issue
11
Pages
6323-6332
Date Issued
2019
Author(s)
Cho E.H.
Lin L.-C.
LI-CHIANG LIN  
DOI
10.1021/acs.jctc.9b00653
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074751127&doi=10.1021%2facs.jctc.9b00653&partnerID=40&md5=d41e5d137b570729f27db9a66e7c773b
https://scholars.lib.ntu.edu.tw/handle/123456789/611467
Abstract
Molecular simulations have been widely employed in the discovery of nanoporous materials, such as metal-organic frameworks (MOFs) and zeolite, for energy- and environment-related applications. To achieve simulation predictions with better accuracy, we herein present a collection of molecular models, including carbon monoxide (CO), carbon dioxide (CO2), carbonyl sulfide (COS), hydrogen sulfide (H2S), nitrogen (N2), nitrous oxide (N2O), and sulfur dioxide (SO2). These models, denoted as electrostatic potential optimized molecular models (ESP-MMs), are systematically developed to not only reproduce experimental vapor-liquid equilibrium but also have accurate electrostatic potential representation surrounding the molecules. Our results show that, with accurate electrostatic potential representations, ESP-MMs can offer improved predictions in a variety of adsorption properties for porous materials, including MOFs with open-metal sites and all-silica zeolites. Specifically, by using ESP-MMs, the binding geometry and adsorption energy landscape can be well captured. This enables these models to be employed to unravel the fundamental mechanism of gaseous adsorption in materials of interest as well as to facilitate the parametrization of adsorbent-adsorbate interactions. We also demonstrate that, combined with generic force fields for adsorbents, ESP-MMs can offer reasonable predictions in adsorption isotherms. Although these ESP-MMs use a relatively simple and nonpolarizable potential form for the sake of efficiency and applicability, their accuracy has been extensively validated in this study. Furthermore, the set of Lennard-Jones potentials with static point charges adopted for ESP-MMs can be readily implemented in all available simulation packages. We anticipate that these ESP-MMs can largely facilitate future computational studies of porous materials for gas separation and removal. Copyright ? 2019 American Chemical Society.
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science