Stable weight updating: A key to reliable PDE solutions using deep learning
Journal
Engineering Analysis with Boundary Elements
Journal Volume
168
Start Page
105933
ISSN
0955-7997
Date Issued
2024-11
Author(s)
DOI
10.1016/j.enganabound.2024.105933
Abstract
Deep learning techniques, particularly neural networks, have revolutionized computational physics, offering powerful tools for solving complex partial differential equations (PDEs). However, ensuring stability and efficiency remains a challenge, especially in scenarios involving nonlinear and time-dependent equations. This paper introduces novel residual-based architectures, namely the Simple Highway Network and the Squared Residual Network, designed to enhance stability and accuracy in physics-informed neural networks (PINNs). These architectures augment traditional neural networks by incorporating residual connections, which facilitate smoother weight updates and improve backpropagation efficiency. Through extensive numerical experiments across various examples—including linear and nonlinear, time-dependent and independent PDEs—we demonstrate the efficacy of the proposed architectures. The Squared Residual Network, in particular, exhibits robust performance, achieving enhanced stability and accuracy compared to conventional neural networks. These findings underscore the potential of residual-based architectures in advancing deep learning for PDEs and computational physics applications.
Subjects
Deep learning
Highway networks
Partial differential equations
Residual network
Squared residual network
Stability
Publisher
Elsevier BV
Type
journal article