Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Regularized Semi-Dense Map Reconstruction from a Monocular Sequence based on Piecewise Planar Constraint and Gauss Newton Method
 
  • Details

Regularized Semi-Dense Map Reconstruction from a Monocular Sequence based on Piecewise Planar Constraint and Gauss Newton Method

Date Issued
2016
Date
2016
Author(s)
Chen, Yu-Ting
DOI
10.6342/NTU201602272
URI
http://ntur.lib.ntu.edu.tw//handle/246246/276285
Abstract
Three-dimensional environment reconstruction from a monocular camera has been a popular and a challenge research topic in past few years. This technique can be applied to unmanned vehicles to perform automatic navigation, environment exploration and automatic obstacle avoidance. In addition, it can also be applied to augmented reality. Since the camera is not equipped with an inertial measurement unit (IMU), it is necessary to locate the camera position and map the environment simultaneously. In this thesis, the camera pose estimation is based on feature based method [24: Lepetit et al. 2009] and direct method [1: Engel et al. 2014]. The camera localization thread is depend on the semi-dense map which is the high gradient area in image and is easily to become noisy. Hence, a method that can regularize the reconstructed semi-dense map without affect the accuracy of the camera pose localization is proposed in this thesis. The regularization method can eliminate the noise and smooth the semi-dense map. Furthermore, the regularization method is related to the photometric information between two images, unlike other methods only using the information of the depth and spatial relation. The reconstruction algorithm can be divide into three parts: stereo matching, piecewise planar constraint, and plane optimization. Since the high gradient areas are always narrow and hard to apply the piecewise planar constraint, a stereo matching method that can broaden the high gradient area by using their nearby low gradient pixels is proposed. After the semi-dense map is reconstructed, the semi-dense map will propagate to the piecewise planar constraint which can estimate the initial piecewise planes for each pixel. Finally, the optimization method is applied to optimize each estimated piecewise plane. In this thesis, the proposed stereo matching is composed of prior depth of ORB feature [27: Rublee et al. 2011], KD-Tree [36: Bentley 1975], Priority Queue and the entropy of the histogram of oriented gradient. The aim is to match the low gradient area around the high gradient area between two images correctly by using the epipolar geometry. It is hard to match two textureless areas between two images, so the best nearby texture area is searched to do the matching procedure. Firstly, if one pixel does not hold an inverse depth hypothesis, the nearby ORB features which has initial depth knowledge is used to initiate the inverse depth value, which can shorter the epipolar line searching length and improve the accuracy of the matching result. Searching the texture area which contains high gradient pixel is done by using k nearest neighbor search with KD-Tree, and sorting the searched pixels in accordance with the gradient magnitude by the priority queue. If the searched point passes the stereo searching constraint, the searched high gradient point will form a 5×5 pixels template and be used to do the stereo line searching. The corresponding points are considered to be matched if the residual between the templates in two image pass the stereo matching threshold which will change with the value of the searching region’s entropy of the histogram of oriented gradient. In the regularization part of this thesis, each tiny piece of point cloud projected from the image in 3D coordinate is assumed to fit a plane. The corresponding size in the image of each piece is set to 5×5 pixels. Since the assumption will not hold if the piece is in the border between two different objects or the discontinuous area, the planar constraint is applied to discriminate the non-planar region. After passing the planar constraint, Gauss-Newton method is used to minimize the photometric error between the two patches which projected from the piece in 3D coordinate in two images and the optimal parameters of the plane can be obtained. Afterwards, the optimal parameters are used to eliminate the noises and smooth the point cloud. The experimental results demonstrate that the proposed regularization algorithm can eliminate most of the noises and reconstruct a more clearly point cloud.
Subjects
Monocular simultaneous localization and mapping
semi-dense map reconstruction
camera pose estimation
nonlinear optimization
regularization algorithm
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-105-R03921066-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):81c61ab6f1d5f0103e324c5218017282

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science