Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. SimCrane 3D+: A Crane Simulator with Kinesthetic and Stereoscopic Vision
 
  • Details

SimCrane 3D+: A Crane Simulator with Kinesthetic and Stereoscopic Vision

Date Issued
2011
Date
2011
Author(s)
Juang, Jhih-Ren
URI
http://ntur.lib.ntu.edu.tw//handle/246246/255539
Abstract
Since cranes have a critical and versatile role in construction sites, it is extremely important that operators be provided with adequate training to enable them perform erections safely and efficiently. Several researchers have developed crane simulators to facilitate operator training. The use of simulators reduces the costs associated with renting actual cranes, and enables the training of operators in a range of tasks and environments, allowing the use of virtual environments to develop the operators’ skills. However, a critical drawback common to most existing simulators is the lack of perception of depth. The effectiveness of training may be reduced if the 3D perspective, obtained through human eyes and body movements is not simulated, especially for complex erection tasks, which are the main objectives of virtual trainings. Therefore, this research added two major components to the simulation system, kinesthetic vision and stereoscopic vision. To realize kinesthetic vision, we integrated Microsoft Kinect as the motion sensor. We also derived two transformation matrices: one for the dynamic eye position captured by the motion sensor and the other for compensating for distortion induced due to the inclined view angle. Stereoscopic vision was realized by integrating the NVIDIA 3D VisionTM package, which includes a 3D rendering pipeline, a pair of 3D glasses, and a 3D display. We also developed a crane simulator, called SimCrane 3D+, by integrating kinesthetic vision and stereoscopic vision into a game framework based on the Microsoft XNA toolset. We also developed a typical erection scenario in a complex simulated environment as an example. We found that SimCrane 3D+ can process continuous readings from the motion sensor and smoothly render stereoscopic views. With the addition of kinesthetic and stereoscopic vision, users now have better depth perception and excellent visibility during the operation. The research results show that the system has great potential for training operators and rehearsing critical erections.
Subjects
crane simulator
crane training
kinesthetic vision
stereoscopic vision
virtual reality
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-100-R98521606-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):1245c14da9571c023066ea885041d9e1

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science