Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Materials Science and Engineering / 材料科學與工程學系
  4. Interface and Morphology Engineering for Polymer and ZnO Thin-Film Transistors: toward High Mobility and Stability
 
  • Details

Interface and Morphology Engineering for Polymer and ZnO Thin-Film Transistors: toward High Mobility and Stability

Date Issued
2011
Date
2011
Author(s)
Fu, Yu
URI
http://ntur.lib.ntu.edu.tw//handle/246246/251690
Abstract
In this study, we have demonstrated methods for fabricating air-stable flexible thin film transistor (TFT) that are suitable for large-area production, with two main focuses: (1) solution-processed poly (3-hexylthiophene) (P3HT) TFTs, and (2) atomic-layer-deposited (ALD) zinc oxide (ZnO) TFTs. With P3HT TFTs, we developed a low-temperature and solution-based fabrication process that yields high device performance. Additionally, we developed solution-processed thin-film encapsulation methods to obtain air-stability from the P3HT TFTs. With ZnO TFTs, we developed ALD processes for the ZnO film, the dielectric layer, and the passivation layer, achieving high field-effect mobility, low operation voltage, mechanical flexibility, and stability under a bias stress. The accomplishments of this study include: (1) we systematically determined the causes and characteristics of the air- and encapsulation-induced degradations of P3HT OTFTs, and based on the obtained knowledge, we developed a solution-based encapsulation process that yielded air-stable P3HT OTFTs (nearly free of degradation for > 5500 h in air) without encapsulation- induced degradation; (2) we demonstrated a solvent-vapor-annealing technique which induces reflow of the P3HT film, resulting in drastically improved field-effect mobility (by a factor of 84, to 0.11 cm2/V s); (3) we systematically studied the ZnO/dielectric interface to determine the factors governing the device performance, obtaining exceptionally high field-effect mobility from ALD ZnO TFTs on polyethylene terephthalate (PET) substrate, 16.9 cm2/V s, which was unprecedented for ALD ZnO-based TFTs; moreover, the TFTs exhibited excellent flexibility: nearly free of degradation upon repeated bending (1000 times) to 0.83 cm of radius; (4) we demonstrated ALD passivation of the ZnO TFTs, improving the bias-stress stability of the devices. The results from my research will provide practical information to the development of large-area-processible flexible TFTs.
Subjects
thin film transistor
TFT
poly(3-hexylthiophene)
ZnO
atomic layer deposition
encapsulation
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-100-D96527026-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):410fcfcb4dcf514bc435c02f5c66fc8a

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science