Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Biomedical Electronics and Bioinformatics / 生醫電子與資訊學研究所
  4. Non-invasive quantification of the photon fluence rate in the prefrontal cortex for transcranial photobiomodulation (tPBM)
 
  • Details

Non-invasive quantification of the photon fluence rate in the prefrontal cortex for transcranial photobiomodulation (tPBM)

Journal
Proceedings of SPIE - The International Society for Optical Engineering
Journal Volume
11925
Date Issued
2021
Author(s)
Hsieh Y.-P
Kao T.-C
KUNG-BIN SUNG  
DOI
10.1117/12.2615837
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120479420&doi=10.1117%2f12.2615837&partnerID=40&md5=a6cbc46867008caecc133c56fb81909e
https://scholars.lib.ntu.edu.tw/handle/123456789/632427
Abstract
Transcranial photobiomodulation (tPBM) has emerged as a novel non-invasive intervention for several neuropsychiatric or neurodegenerative conditions due to its neuroprotective and neuroenhancement effects by applying red/near-infrared (NIR) light to the forehead. tPBM has been applied to improve cognition in chronic traumatic brain injury, whereas tPBM-induced enhancement of the brain is dose-dependent and the effectiveness of each dose is affected by several factors such as the brain structure. In this study, we perform Monte Carlo simulations on 154 head models built with magnetic resonance images of healthy subjects, and propose a machine-learning based model that predicts the fraction of the energy of 1064-nm photons delivered to the gray matter (GM) based on the diffuse reflectance exiting the scalp surface (with wavelengths of 660, 730, 810, 850, and 940 nm) and demographic variables such as gender and age. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
Subjects
Dosimetry; Monte Carlo methods; Photobiomodulation; Transcranial light stimulation
Other Subjects
Brain; Intelligent systems; Light; Magnetic resonance; Magnetic resonance imaging; Photons; Fluence rates; Invasive intervention; Light stimulation; MonteCarlo methods; Near infrared light; Photobiomodulation; Photon fluence; Prefrontal cortex; Transcranial; Transcranial light stimulation; Monte Carlo methods
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science