Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Fully nested neural network for adaptive compression and quantization
 
  • Details

Fully nested neural network for adaptive compression and quantization

Journal
IJCAI International Joint Conference on Artificial Intelligence
Journal Volume
2021-January
Pages
2080-2087
Date Issued
2020
Author(s)
Cui Y
Liu Z
Yao W
Li Q
Chan A.B
Xue C.J.
TEI-WEI KUO  
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097350250&partnerID=40&md5=ed52e7350f663feda9a06540f4af24f5
https://scholars.lib.ntu.edu.tw/handle/123456789/581463
Abstract
Neural network compression and quantization are important tasks for fitting state-of-the-art models into the computational, memory and power constraints of mobile devices and embedded hardware. Recent approaches to model compression/quantization are based on reinforcement learning or search methods to compress/quantize the neural network for a specific hardware platform. However, these methods require multiple runs to compress/quantize the same base neural network to different hardware setups. In this work, we propose a fully nested neural network (FN3) that runs only once to build a nested set of compressed/quantized models, which is optimal for different resource constraints. Specifically, we exploit the additive characteristic in different levels of building blocks in neural network and propose an ordered dropout (ODO) operation that ranks the building blocks. Given a trained FN3, a fast heuristic search algorithm is run offline to find the optimal removal of components to maximize the accuracy under different constraints. Compared with the related works on adaptive neural network designed only for channels or bits, the proposed approach is unified for different levels of building blocks (bits, neurons, channels, residual paths and layers). Empirical results validate strong practical performance of the proposed approach. ? 2020 Inst. Sci. inf., Univ. Defence in Belgrade. All rights reserved.
Other Subjects
Heuristic algorithms; Optimization; Reinforcement learning; Adaptive compression; Adaptive neural networks; Heuristic search algorithms; Model compression; Network compression; Power constraints; Resource Constraint; Specific hardware; Multilayer neural networks
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science