Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Automated whole breast segmentation for hand-held ultrasound with position information: Application to breast density estimation
 
  • Details

Automated whole breast segmentation for hand-held ultrasound with position information: Application to breast density estimation

Journal
Computer Methods and Programs in Biomedicine
Journal Volume
197
Date Issued
2020
Author(s)
Chang, J.-F.
CHIUN-SHENG HUANG  
RUEY-FENG CHANG  
DOI
10.1016/j.cmpb.2020.105727
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090363695&doi=10.1016%2fj.cmpb.2020.105727&partnerID=40&md5=84b87723aa37f3c4c60744b791e07354
https://scholars.lib.ntu.edu.tw/handle/123456789/557880
Abstract
Background and objective: Women with higher breast densities have a relatively higher risk to be diagnosed with breast cancer. Hand-held ultrasound (HHUS) can provide precise screening results and detect masses in dense breasts. However, its lack of position information and automatic extraction of breast area hinder the implementation of density estimation. To facilitate reliable breast density evaluation, this study proposed an upgraded version of our whole-breast ultrasound (WBUS) system, which not only can provide precise position information, but also can extract precise breast area automatically based on deep learning method. Methods: WBUS images with probe position information were collected from 117 women. For each case, an automatic breast region segmentation by DeepResUnet was conducted, then fibroglandular tissues were extracted from breast region using fuzzy c-mean (FCM) classifier. Finally, the percentage of breast density and breast area of the DeepResUnet predicted region and the breast region of the ground truth were calculated and compared. Results: The average and standard deviation of each breast case for DeepResUnet predicted breast region of 10-fold in Accuracy (ACC) was 0.963±0.054. Sensitivity (SENS) was 0.928±0.11. Specificity (SPEC) was 0.967±0.054. Dice coefficient (Dice) was 0.916±0.98. Region intersection over union (IoU) was 0.856±0.134. Significant and very high correlations of breast density, fibroglandular tissue area and breast area (R = 0.843, R= 0.822 and R = 0.984, all p values < 0.001) were found between the ground truth and the result of the proposed method for ultrasound images. Conclusions: Breast density, fibroglandular tissue, and breast volume evaluated based on the proposed method and WBUS system have significant correlations with ground truth, indicating that the proposed method and WBUS system has the potential to be an alternative modality for breast screening and density estimation in clinical use. ? 2020
SDGs

[SDGs]SDG3

Other Subjects
Deep learning; Learning systems; Tissue; Tissue engineering; Ultrasonic applications; Automatic extraction; Breast density estimation; Breast segmentation; Density estimation; Fibroglandular tissue; Position information; Region segmentation; Standard deviation; Medical imaging; adolescent; adult; aged; Article; automation; breast cancer; breast density; computer prediction; correlation coefficient; deep learning; deep neural network; diagnostic accuracy; echomammography; female; fuzzy c means clustering; human; human tissue; image segmentation; interrater reliability; major clinical study; needle biopsy; reproducibility; sensitivity and specificity; statistical significance; breast; breast tumor; diagnostic imaging; echomammography; image processing; Breast; Breast Density; Breast Neoplasms; Female; Humans; Image Processing, Computer-Assisted; Ultrasonography, Mammary
Publisher
Elsevier Ireland Ltd
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science