Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. A unified framework for automatic detection of wound infection with artificial intelligence
 
  • Details

A unified framework for automatic detection of wound infection with artificial intelligence

Journal
Applied Sciences (Switzerland)
Journal Volume
10
Journal Issue
15
Date Issued
2020-08
Author(s)
JIN-MING WU  
Tsai, Chia-Jui
Ho, Te-Wei
FEI-PEI LAI  
HAO-CHIH TAI  
MING-TSAN LIN  
DOI
10.3390/APP10155353
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089954575&doi=10.3390%2fAPP10155353&partnerID=40&md5=d3a65bb3e556677216135d11dc032985
https://scholars.lib.ntu.edu.tw/handle/123456789/562463
Abstract
Background: The surgical wound is a unique problem requiring continuous postoperative care, and mobile health technology is implemented to bridge the care gap. Our study aim was to design an integrated framework to support the diagnosis of wound infection. Methods: We used a computer-vision approach based on supervised learning techniques and machine learning algorithms, to help detect the wound region of interest (ROI) and classify wound infection features. The intersection-union test (IUT) was used to evaluate the accuracy of the detection of color card and wound ROI. The area under the receiver operating characteristic curve (AUC) of our model was adopted in comparison with different machine learning approaches. Results: 480 wound photographs were taken from 100 patients for analysis. The average value of IUT on the validation set with fivefold stratification to detect wound ROI was 0.775. For prediction of wound infection, our model achieved a significantly higher AUC score (83.3%) than the other three methods (kernel support vector machines, 44.4%; random forest, 67.1%; gradient boosting classifier, 66.9%). Conclusions: Our evaluation of a prospectively collected wound database demonstrates the effectiveness and reliability of the proposed system, which has been developed for automatic detection of wound infections in patients undergoing surgical procedures. © 2020 by the authors.
Subjects
Artificial intelligence
Telecare
Wound infection
Publisher
MDPI AG
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science