Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Modeling water quality in an urban river using hydrological factors - Data driven approaches
 
  • Details

Modeling water quality in an urban river using hydrological factors - Data driven approaches

Journal
Journal of Environmental Management
Journal Volume
151
Pages
87-96
Date Issued
2015
Author(s)
FI-JOHN CHANG  
Tsai Y.-H.
Chen P.-A.
Coynel A.
Vachaud G.
DOI
10.1016/j.jenvman.2014.12.014
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/448925
URL
https://www2.scopus.com/inward/record.uri?eid=2-s2.0-84919882117&doi=10.1016%2fj.jenvman.2014.12.014&partnerID=40&md5=a00b24631a2671ecdbf9e1eea907c46e
Abstract
Contrasting seasonal variations occur in river flow and water quality as a result of short duration, severe intensity storms and typhoons in Taiwan. Sudden changes in river flow caused by impending extreme events may impose serious degradation on river water quality and fateful impacts on ecosystems. Water quality is measured in a monthly/quarterly scale, and therefore an estimation of water quality in a daily scale would be of good help for timely river pollution management. This study proposes a systematic analysis scheme (SAS) to assess the spatio-temporal interrelation of water quality in an urban river and construct water quality estimation models using two static and one dynamic artificial neural networks (ANNs) coupled with the Gamma test (GT) based on water quality, hydrological and economic data. The Dahan River basin in Taiwan is the study area. Ammonia nitrogen (NH3-N) is considered as the representative parameter, a correlative indicator in judging the contamination level over the study. Key factors the most closely related to the representative parameter (NH3-N) are extracted by the Gamma test for modeling NH3-N concentration, and as a result, four hydrological factors (discharge, days w/o discharge, water temperature and rainfall) are identified as model inputs. The modeling results demonstrate that the nonlinear autoregressive with exogenous input (NARX) network furnished with recurrent connections can accurately estimate NH3-N concentration with a very high coefficient of efficiency value (0.926) and a low RMSE value (0.386mg/l). Besides, the NARX network can suitably catch peak values that mainly occur in dry periods (September-April in the study area), which is particularly important to water pollution treatment. The proposed SAS suggests a promising approach to reliably modeling the spatio-temporal NH3-N concentration based solely on hydrological data, without using water quality sampling data. It is worth noticing that such estimation can be made in a much shorter time interval of interest (span from a monthly scale to a daily scale) because hydrological data are long-term collected in a daily scale. The proposed SAS favorably makes NH3-N concentration estimation much easier (with only hydrological field sampling) and more efficient (in shorter time intervals), which can substantially help river managers interpret and estimate water quality responses to natural and/or manmade pollution in a more effective and timely way for river pollution management. © 2014 Elsevier Ltd.
Subjects
Ammonia nitrogen (NH3-N); Artificial neural network (ANN); Gamma test; Nonlinear autoregressive with exogenous input (NARX) network; River basin management; Water quality
SDGs

[SDGs]SDG6

[SDGs]SDG11

Other Subjects
ammonia; nitrogen; rain; water pollutant; artificial neural network; basin management; database; hydrological modeling; pollution control; river pollution; seasonal variation; typhoon; water quality; Article; artificial neural network; biochemical oxygen demand; catchment; chemical oxygen demand; economic aspect; environmental impact; human; human activities; hydrology; mathematical analysis; river basin; spatiotemporal analysis; suspended particulate matter; urban area; water contamination; water management; water pollution; water quality; water temperature; chemistry; environmental monitoring; hydrology; procedures; regression analysis; river; season; Taiwan; theoretical model; water pollutant; Dahan Basin; Taiwan; Environmental Monitoring; Humans; Hydrology; Models, Theoretical; Nitrogen; Regression Analysis; Rivers; Seasons; Taiwan; Water Pollutants, Chemical; Water Quality
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science