Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Oceanography / 海洋研究所
  4. Microbial community composition predicts bacterial production across ocean ecosystems
 
  • Details

Microbial community composition predicts bacterial production across ocean ecosystems

Journal
The ISME Journal
Journal Volume
18
Journal Issue
1
ISSN
1751-7362
1751-7370
Date Issued
2024-01
Author(s)
Connors, Elizabeth
Dutta, Avishek
Trinh, Rebecca
Erazo, Natalia
Dasarathy, Srishti
Ducklow, Hugh
Weissman, J L
YI-CHUN YEH  
Schofield, Oscar
Steinberg, Deborah
Fuhrman, Jed
Bowman, Jeff S
DOI
10.1093/ismejo/wrae158
URI
https://www.scopus.com/pages/publications/85203874994?origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/732912
Abstract
Microbial ecological functions are an emergent property of community composition. For some ecological functions, this link is strong enough that community composition can be used to estimate the quantity of an ecological function. Here, we apply random forest regression models to compare the predictive performance of community composition and environmental data for bacterial production (BP). Using data from two independent long-term ecological research sites - Palmer LTER in Antarctica and Station SPOT in California - we found that community composition was a strong predictor of BP. The top performing model achieved an R2 of 0.84 and RMSE of 20.2 pmol L-1 hr-1 on independent validation data, outperforming a model based solely on environmental data (R2 = 0.32, RMSE = 51.4 pmol L-1 hr-1). We then operationalized our top performing model, estimating BP for 346 Antarctic samples from 2015 to 2020 for which only community composition data were available. Our predictions resolved spatial trends in BP with significance in the Antarctic (P value = 1 × 10-4) and highlighted important taxa for BP across ocean basins. Our results demonstrate a strong link between microbial community composition and microbial ecosystem function and begin to leverage long-term datasets to construct models of BP based on microbial community composition.
Subjects
bacterial production
community structure
microbial ecological function
random forest regression
Publisher
Oxford University Press (OUP)
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science