Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. National Taiwan University Hospital / 醫學院附設醫院 (臺大醫院)
  4. Early recognition of a caller's emotion in out-of-hospital cardiac arrest dispatching: An artificial intelligence approach
 
  • Details

Early recognition of a caller's emotion in out-of-hospital cardiac arrest dispatching: An artificial intelligence approach

Journal
Resuscitation
Journal Volume
167
Start Page
144-150
ISSN
0300-9572
1873-1570
Date Issued
2021-10
Author(s)
Chin, Kuan-Chen
Hsieh, Tzu-Chun
WEN-CHU CHIANG  
Chien, Yu-Chun
Sun, Jen-Tung
HAO-YANG LIN  
MING-JU HSIEH  
CHIH-WEI YANG  
ALBERT CHEN  
MATTHEW HUEI-MING MA  
DOI
10.1016/j.resuscitation.2021.08.032
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/585952
Abstract
Aim: This study aimed to develop an AI model for detecting a caller's emotional state during out-of-hospital cardiac arrest calls by processing audio recordings of dispatch communications. Methods: Audio recordings of 337 out-of-hospital cardiac arrest calls from March-April 2011 were retrieved. The callers' emotional state was classified based on the emotional content and cooperative scores. Mel-frequency cepstral coefficients extracted essential information from the voice signals. A support vector machine was utilised for the automatic judgement, and repeated random sub-sampling cross validation (RRS-CV) was applied to evaluate robustness. The results from the artificial intelligence classifier were compared with the consensus of expert reviewers. Results: The audio recordings were classified into five emotional content and cooperative score levels. The proposed model had an average positive predictive value of 72.97%, a negative predictive value of 93.47%, sensitivity of 38.76%, and specificity of 98.29%. If only the first 10 seconds of the recordings were considered, it had an average positive predictive value of 84.62%, a negative predictive value of 93.57%, sensitivity of 52.38%, and specificity of 98.64%. The artificial intelligence model's performance maintained preferable results for emotionally stable cases. Conclusion: Artificial intelligence models can possibly facilitate the judgement of callers' emotional states during dispatch conversations. This model has the potential to be utilised in practice, by pre-screening emotionally stable callers, thus allowing dispatchers to focus on cases that are judged to be emotionally unstable. Further research and validation are required to improve the model's performance and make it suitable for the general population.
Subjects
Artificial intelligence
Dispatcher
Emergency medical dispatch
Emergency medical services
Emotion recognition
Frequency cepstral coefficients
Hospital cardiac arrest
Mel-scale
Out-of-
Support vector machines
SDGs

[SDGs]SDG3

Other Subjects
Article; artificial intelligence; audio recording; cohort analysis; consensus; controlled study; conversation; decision making; diagnostic test accuracy study; emergency medical dispatch; emotion; human; major clinical study; Monte Carlo cross validation;
Publisher
Elsevier BV
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science