Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Biomechatronics Engineering / 生物機電工程學系
  4. Tracking DNA route on protein structure by knowledge-based learning considering geometric propensity between side chains and bases
 
  • Details

Tracking DNA route on protein structure by knowledge-based learning considering geometric propensity between side chains and bases

Date Issued
2009
Date
2009
Author(s)
Wang, Chien-Chih
URI
http://ntur.lib.ntu.edu.tw//handle/246246/180289
Abstract
DNA-binding proteins reveal their functions through specific or non-specific protein-DNA recognition. Identifying DNA-binding residues with computational tools facilitates predicting or validating protein functions at a high-throughput rate. The protein-DNA complexes available in Protein Data Bank (PDB) further unveils how a DNA-binding protein recognizes its partners. Such information greatly helps biologists to determine or predict the binding elements in DNA sequences such as transcription factor binding sites (TFBSs). In this way, accurate regulatory networks in whole-genome scale can be constructed more efficiently in the near future. While it remains a challenging task to understand the mechanism of protein-DNA interactions without crystal complex structures, this thesis proposes an algorithm to predict the binding position and direction of DNA when given a known protein structure. First, potential DNA-binding regions of a query protein is predicted by a sequential pattern mining software, MAGIIC-PRO, which identifies functional regions of a protein by discovering concurrent conserved regions among its related protein sequences. After functional regions are predicted, we extract the residues in the protein surface and use hierarchical clustering algorithm to derive potential DNA-binding units, compact conserved regions with high DNA-binding propensity. Afterward, principal component analysis (PCA) is applied on the collected atoms to predict the orientation of DNA grooves. In order to derive the positions where the DNA bases like to be present, we propose a knowledge-based learning procedure to construct a predicting model that considers geometric propensity between protein side chains and DNA bases. The experiments conducted in the thesis reveal that we can predict the orientation of the DNA grooves around the selected conserved regions with satisfied errors. Furthermore, with a well-designed scoring function that incorporates radius basis function (RBF) as the kernel, we build spatial distributions of the positions where DNA bases likes to be present. The computational outputs are expected to provide useful information for many of the next-step analyses such as protein-DNA docking and TFBS predictions.
Subjects
DNA-binding sites
binding orientation
structure-based prediction
protein-DNA interactions
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-98-R96631012-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):e5fa535b7cf69b115bc98c3d0ddbdceb

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science