Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Investigation of Loop Heat Pipe Energy Storage System
 
  • Details

Investigation of Loop Heat Pipe Energy Storage System

Date Issued
2007
Date
2007
Author(s)
Yu, Cheng-Jung
DOI
zh-TW
URI
http://ntur.lib.ntu.edu.tw//handle/246246/61404
Abstract
  The energy storage system has been widely researched and used in recent years due to the energy crisis and environment protection. The development of energy storage system can help to collect the natural energy such as solar energy, or recycle the excess heat generated from the industrial processes. The loop heat pipe employs the phase-change mechanism, and hence has better efficiency. Loop heat pipes are not only cheap and easy to get, its passive design also makes it more reliable. Thus a loop heat pipe is used in our energy storage system. The liquid inside the evaporation tube will absorb the energy transferred from the heat source and becomes vapor, then moves toward the condenser and releases the latent heat into the water inside the energy storage tank. In our experiments, smooth, sintered and meshed copper tubes were used as different evaporation tubes. Other parameters were the fill-ratio of the system, power input, and different working fluids, inclusive of pure water and Al2O3 nanofluid (0.5wt%). Boiling characteristics and efficiencies are discussed.   For the experiments with pure water as working fluids at low fill-ratio, results showed that the sintered tube had the best average energy storage efficiency, about 3%~7% better than meshed tube; and the meshed tube was 3%~10% better than smooth tube. At higher fill-ratio, the performances of sintered and meshed tubes were similar, but both were better than smooth tube about 3%~10%. When the nucleate boiling occurred in the smooth tube, its average efficiency became comparable to the meshed tube. The best average efficiencies of sintered, meshed and smooth tubes were 37.80%, 35.38%, and 33.30%, respectively. For the smooth and meshed tubes experiments with nanofluid as working fluids, results showed that the nanofluid did not aggressively enhance the average efficiency due to its higher superheat and late occasion of nucleate boiling characteristics. But it is able to enhance the efficiency for sintered tubes at low input power (5W) experiments about 5.86%~8.47%.
Subjects
迴路式熱管
毛細結構
儲能系統
核沸騰
奈米流體
Loop Heat Pipe
Wick Structure
Energy Storage System
Nucleate Boiling
Nanofluids
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-96-R94522301-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):33fe451cc6d3da06435577f5b65b26ce

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science