Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Applied Mechanics / 應用力學研究所
  4. Experimental Study of Viscosity of Titanium Oxide Nanofluids
 
  • Details

Experimental Study of Viscosity of Titanium Oxide Nanofluids

Date Issued
2014
Date
2014
Author(s)
Yeh, Hshing-I
URI
http://ntur.lib.ntu.edu.tw//handle/246246/264103
Abstract
Nanofluid is a liquid suspended with uniformly distributed and stable nano-sized particles. The heat conductivity of nanofluid is substantially higher than that of its base fluid and the classical theoretical prediction according to the literature, but the mechanisms are still not fully understood. Such a heat conductivity enhancement implies that nanofluids can be applied to heat exchangers. However, the pumping power of nanofluids in heat exchanger depends on its viscosity, which is also one of the major topics of nanofluid research, and is also the goal of the present thesis. The nanofluids of the present study are made by introducing TiO2 nano particles into de-ionized water or glycerol. Viscosity measurements were performed and the results are summarized as follows: (i) Nanofluids are Newtonian fluids in the parameter ranges of the present study. (ii) The viscosity of nanofluid increases as the particle’s volume fraction increases, as the particle size decreases, and as the temperature decreases. On the other hand, the relative viscosity (the ratio between the nanofluid viscosity and the base fluid viscosity) remains essentially invariant with temperature, implying that the temperature variation of nanofluid viscosity is qualitatively similar to that of base fluid. However, the relative viscosity of nanofluid is larger for case with smaller particles and with less viscous base fluid, because of the stronger Brownian effect. Also the relative viscosity is larger for higher volume fraction as more particles participates the Brownain effect. (iii) The nanofluid viscosity increases with the base fluid electric conductivity, and reaches its maximum value (about 240 times the viscosity of the base fluid) at an electric conductivity corresponds to the isoelectric point (when pH = 6 approximately). The viscosity decreases rapidly as the pH value increases further above the isoelectric point. The above phenomena can be explained by the particle agglomeration effect associated with the weakening of the Coulomb’s repulsive force between electric double layers of two particles. (iv) The viscosity decreases slightly as times goes by. Such an aging effect becomes moderate at higher volume fraction. For example, the viscosity decreases about 10% after a week for a nanofluid with volume fraction 4%.
Subjects
二氧化鈦
奈米流體
黏度
導電率
布朗運動
電雙層
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-103-R01543072-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):03ae61715d7010b5043e2304cbe91b43

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science