Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Physics / 物理學系
  4. Optoelectronic Properties of III-Nitride Semiconductors
 
  • Details

Optoelectronic Properties of III-Nitride Semiconductors

Date Issued
2007
Date
2007
Author(s)
Chang, Hsiu-Ju
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/54509
Abstract
In this thesis, we perform several studies of electrical and optical properties of nitride-based semiconductor heterostructure, including InGaN thin film, InGaN/GaN multiple quantum wells, InGaN/GaN superlattices, AlGaN/GaN superlattices, and InGaN/GaN nanotips. These results are presented as follows. The structural and optical properties of Mg-doped AlGaN/GaN superlattices have been investigated by photoluminescence (PL), scanning electron microscopy (SEM), cathodoluminescence (CL) and transmission electron microscopy (TEM). We found that the edge blue-band emission shows a strong optical anisotropy. Through the combination of the CL and TEM images, we clearly establish that the underlying microstructure responsible for the blue luminescence in Mg-doped AlGaN/GaN arises from the pyramidal defects. We have reported an intriguing photoelastic effect in InGaN QDs for the first time. The optically modulated internal strain contributes to the blueshift in edge PL spectra, a reduction of the refractive index, and a redshift in the InGaN LO phonon mode. In addition, the change of the temperature dependence of the PL emission energy under high and low excitation density can also be explained consistently. We have demonstrated a significant improvement of the emission from InGaN/GaN nanotip arrays compared with InGaN/GaN MQWs. The nanotip arrays were formed by a simple and low cost self-masked dry etching process, which is compatible with the current semiconductor technologies. Our unique approach is able to enhance the light output power by a factor of up to 10 times. Based on our study, we clearly demonstrate that the main underlying mechanism for the enhanced luminescence arises from the strain relaxation in the nanotip through its inherent characteristic of a large surface-to-volume ratio. Lateral current-induced spin polarization in InGaN/GaN superlattices (SLs) without an applied magnetic field is reported. The fact that the sign of the nonequilibrium spin changes as the current reverses and is opposite for the two edges provides a clear signature for the spin Hall effect. In addition, it is discovered that the spin Hall effect can be strongly manipulated by the internal strains. A theoretical work has also been developed to understand the observed strain-induced spin polarization. Our result paves an alternative way for the generation of spin polarized current. The correlation between optical and structure properties obtained by XRD, SEM images, EDS, and localized CL spectra provides a direct and concrete evidence to support the fact that the formation of nanoclusters is responsible for the enhanced luminescence in InGaN thin films. Our results shown here can serve as an important clue for the enhancement of the luminescent intensity in future optoelectronic devices. Key words : PL, InGaN/GaN, Raman
Subjects
光激發螢光
氮化銦鎵/氮化鎵
拉曼
PL
InGaN/GaN
Raman
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-96-D92222014-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):a9bd6c4b669ec4a4d1dbe3435bce5f17

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science