Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Development of supported plasma membrane platforms from giant plasma membrane vesicles to study membrane protein functions
 
  • Details

Development of supported plasma membrane platforms from giant plasma membrane vesicles to study membrane protein functions

Date Issued
2016
Date
2016
Author(s)
Wang, Jou-Fang
DOI
10.6342/NTU201601588
URI
http://ntur.lib.ntu.edu.tw//handle/246246/271795
Abstract
Processing and handling cell membrane proteins while maintaining their intact structural information remains one of the biggest bottlenecks to characterize and understand their structure-function behavior, even though membrane proteins are the major targets for therapeutic development. Most of the problem stems from the requirement of protecting the delicate membrane-embedded hydrophobic core from water during processing to prevent denaturation and loss of function. Here, we obtained giant plasma membrane vesicles (GPMVs) directly from Hela cells and used them to form supported lipid bilayer platforms, so that the membrane proteins can be processed in their native lipid bilayer environment. The data from fluorescence recovery after photobleaching technique show that the species in the supported GPMV membrane platform have fluidity. GPMVs deposited on polymer cushions, PEMA and polydopamine, were shown to have better fluidity than those deposited on bare glass coverslips. More importantly, since the two lipid leaflets and the membrane proteins across the cell membrane are asymmetric, controlling which side of the cell membrane faces the aqueous environment and which one faces the solid support is important for us to study the interested protein function. The anti-ADAM17 antibody experiment shows that the inner leaflet faced the aqueous environment when the GPMVs spontaneously broke on the solid surface. We developed a blotting method to transfer the formed supported GPMV membrane to another suitable support to make an outer-leaflet-facing out supported GPMV membrane. With the blotting method, we might be able to use supported GPMV membranes to study membrane proteins from either side of the cell plasma membrane.
Subjects
supported lipid bilayer
giant plasma membrane vesicle (GPMV)
rupturing mechanism
polymer cushion
cell membrane orientation
membrane blotting
proteoliposome
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-105-R03524045-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):8b18808ca2cffeb81c617815a2568c9a

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science