Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Dehydrated Biomimetic Membranes with Skinlike Structure and Function
 
  • Details

Dehydrated Biomimetic Membranes with Skinlike Structure and Function

Journal
ACS Applied Materials and Interfaces
ISSN
19448244
Date Issued
2024
Author(s)
Oh, Hyeonji
YU-MING TU  
Samineni, Laximicharan
De Respino, Sophie
Mehrafrooz, Behzad
Joshi, Himanshu
Massenburg, Lynnicia
Lopez-Marques, Horacio
Elessawy, Nada
Song, Woochul
Behera, Harekrushna
Dhiman, Raman
Boorla, Veda Sheersh
Kher, Kartik
Lin, Yi-Chih
Maranas, Costas
Aksimentiev, Aleksei
D. Freeman, Benny
Kumar, Manish
DOI
10.1021/acsami.3c19572
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-85133503294&origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/721213
Abstract
Novel vapor-permeable materials are sought after for applications in protective wear, energy generation, and water treatment. Current impermeable protective materials effectively block harmful agents but trap heat due to poor water vapor transfer. Here we present a new class of materials, vapor permeable dehydrated nanoporous biomimetic membranes (DBMs), based on channel proteins. This application for biomimetic membranes is unexpected as channel proteins and biomimetic membranes were assumed to be unstable under dry conditions. DBMs mimic human skin’s structure to offer both high vapor transport and small molecule exclusion under dry conditions. DBMs feature highly organized pores resembling sweat pores in human skin, but at super high densities (>1012 pores/cm2). These DBMs achieved exceptional water vapor transport rates, surpassing commercial breathable fabrics by up to 6.2 times, despite containing >2 orders of magnitude smaller pores (1 nm vs >700 nm). These DBMs effectively excluded model biological agents and harmful chemicals both in liquid and vapor phases, again in contrast with the commercial breathable fabrics. Remarkably, while hydrated biomimetic membranes were highly permeable to liquid water, they exhibited higher water resistances after dehydration at values >38 times that of commercial breathable fabrics. Molecular dynamics simulations support our hypothesis that dehydration induced protein hydrophobicity increases which enhanced DBM performance. DBMs hold promise for various applications, including membrane distillation, dehumidification, and protective barriers for atmospheric water harvesting materials. © 2024 American Chemical Society.
Subjects
biomimetic membranes
breathable fabrics
hydrophobic nano channels
selective permeation
water vapor transport
Publisher
American Chemical Society
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science