Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Industrial Engineering / 工業工程學研究所
  4. Improving Selected split by Stratified Bootstrap Methods
 
  • Details

Improving Selected split by Stratified Bootstrap Methods

Date Issued
2012
Date
2012
Author(s)
Wang, Po-Hsun
URI
http://ntur.lib.ntu.edu.tw//handle/246246/254651
Abstract
Generally, it’s believed that the traditional classification tree, such as Classification and Regression Trees (CART), can effectively classify certain type of data distribution clearly. In fact, because of the split selecting criterion and the procedure used by the traditional classification tree, we can show that it is not always as efficient as expected. The unsuitable split selected will result in many problems such as sample size depletion and over fitting. Without enough sample size, split in the lower hierarchical levels becomes incorrect selection of attributes extremely unreliable. In order to improve the CART performance, we use the Variation Reduction criterion to select the split of a node that splits a node into two child nodes in the next layer. In this research, we propose a new method to improve the split selection. We use stratified sampling to stratify data into multiple sub-sample and use bootstrap method to re-sampling incidences in each sub-sample. The splits are then selected by the variation reduction criterion. Finally, we calculate the mean of each split of bootstrap sample as the “stratified bootstrap split” . The stratified bootstrap splits can improve the variability of splits for certain types of sample distribution and obtain a more stable split to avoid incorrect splits and attribute selection. According to the simulation results in this research, the densities of sample distribution is the most important factor that affects the “Original split” and “Stratified Bootstrap split” performance. We propose a “Weighted split” to integrate the original CART split and the proposed “Stratified Bootstrap split”. It is shown that the weighted split is robust and thus avoid incorrect split and selection of attributes. Though out this thesis, examples are use to illustrate the proposed method. Finally, a hypothetic tree is used to demonstrate how the performance of CART can be improved by the proposed weighted split.
Subjects
Classification and Regression Trees
Density of sample distribution
Stratified sampling
Bootstrap method
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-101-R99546028-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):59bf41d17857eacb24f3173193d35bb9

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science