Viscoelastic modelling of the tricuspid valve chordae tendineae tissue
Journal
Applied Mathematical Modelling
Journal Volume
105
Pages
648-669
Date Issued
2022
Author(s)
Abstract
In the present study, the mechanical behavior of tricuspid valve (TV) chordae tendineae tissue is investigated experimentally and theoretically. A series of uniaxial mechanical testing experiments of the TV chordae tendineae is conducted and its viscoelastic model is developed by taking into account the initial condition of displacement of the tissue. Our experimental result shows the typical J-shaped force-displacement curve of the TV chordae tendineae and the corresponding viscoelastic model is established via a nonlinear spring the is installed to replace the linear spring of the generalized Kelvin model. In addition, specified arrangements of the model parameters and the initial condition of the individual Kelvin element are proposed. The exact solutions of the model under step-wise and constant-rate forces are analytically derived and calibration of the model constants is addressed. The resulted simulation is compared with uniaxial mechanical testing of the TV chordae tendineae tissue and shows superior performance of the proposed model under creep and monotonic loading experiments. Furthermore, the sensitivity analysis and the parameter study are performed to examine the influence of initial conditions of displacement andother internal variables on the model response under step-wise and constant-rate forces. © 2022 Elsevier Inc.
Subjects
Chordae tendineae; Creep response; Nonlinear generalized Kelvin model; Uniaxial mechanical test; Viscoelastic model
Other Subjects
Creep; Mechanical testing; Rate constants; Sensitivity analysis; Tissue; Valves (mechanical); Chordae tendineae; Constant rate; Creep response; Generalized kelvin models; Initial conditions; Mechanical; Nonlinear generalized kelvin model; Tricuspid valve; Uniaxial mechanical test; Viscoelastic models; Viscoelasticity
Type
journal article
