Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Chemistry / 化學系
  4. Non-Markovianity Measurement and Coherent Modified Redfield Theory in Simulating Dynamics of Excitation Energy Transfer
 
  • Details

Non-Markovianity Measurement and Coherent Modified Redfield Theory in Simulating Dynamics of Excitation Energy Transfer

Date Issued
2015
Date
2015
Author(s)
CHANG, YU
URI
http://ntur.lib.ntu.edu.tw//handle/246246/272063
Abstract
Excitation energy transfer (EET) is a crucial process in many natural and artificial light-harvesting systems. Such process may occur when the energies of two weakly coupled electronic excitations are matched, which is widely recognized as a Förster resonance energy transfer. However, EET can also occur through a relaxation process especially for the cases, where the interaction between the interested system and its external environment is weak. This process is called a Redfield energy transfer. A successful theoretical method to simulate EET dynamics strongly depends on how to solve the balance between the two limits. In this study, we first investigate the shortcoming of the Markovian Redfield theory, which is widely used in simulating energy relaxation in molecular systems. We show that for general initial conditions, Markovian Redfield theory almost always yields dynamics that violates the positivity requirement for density matrices particularly on strong electron-phonon coupling and high temperature, making the theory inadequate for simulating EET in molecular systems. It is evident that the non-Markovian effects cannot be ignored in most situations. We then adopt the positivity violation to establish a non-Markovianity measure to quantify non-Markovian effects. To remedy the Redfield approach, a coherent modified Redfield theory was recently developed. Compared to traditional Förster and Redfield theory, the CMRT has a wider range of applicability resulting from the smaller perturbation and inclusion of multiphonon relaxation. In addition, by using a secular approximation to retain the major pathways in dissipation process, the secular CMRT can not only reduce the computational cost, but also capture the important coherent dynamics. In this work, the accuracy of CMRT is comprehensively investigated in the comparisons with numerically exact path-integral method. The results reveal an important role of “dynamical localization” when the coherence effect is overestimated. Finally, we apply the CMRT to study non-Förster EET dynamics in a silylene-spaced copolymer system. We reproduce the absorption and fluorescence spectra of the systems and derive parameters from spectral fitting. The parameters are subsequently used to calculate the EET dynamics, which allows us to describe both Förster and non-Förster dynamics in the system. We also investigated the effects of static energetic disorder on EET dynamics, which shows several dynamical groups with different EET rates. The energetic disorder causes a distribution of delocalization lengths, where the longer delocalization lengths characterized by strongly coherent systems is accounted for the fast dynamics. In summary, we examine the applicability of Markovian Redfield theory and simulate the EET dynamics with newly developed CMRT.
Subjects
Non-Markovianity
Coherent Modified Redfield Theory
Excitation Energy Transfer
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-104-R02223123-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):9951fd36439f21bdafabf44cd2ee15eb

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science