Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Multi-step-ahead neural networks for flood forecasting
 
  • Details

Multi-step-ahead neural networks for flood forecasting

Resource
Hydrological Sciences Journal, 52(1), 114-130
Journal
Hydrological Sciences Journal
Pages
114-130
Date Issued
2007-02
Date
2007-02
Author(s)
Chang, Fi-John  
CHIANG, YEN-MING
CHANG, LI-CHIU
DOI
10.1623/hysj.52.1.114
URI
http://ntur.lib.ntu.edu.tw//handle/246246/176316
Abstract
A reliable flood warning system depends on efficient and accurate forecasting technology. A systematic investigation of three common types of artificial neural networks (ANNs) for multi-step-ahead (MSA) flood forecasting is presented. The operating mechanisms and principles of the three types of MSA neural networks are explored: multi-input multi-output (MIMO), multi-input single-output (MISO) and serial-propagated structure. The most commonly used multi-layer feed-forward networks with conjugate gradient algorithm are adopted for application. Rainfall—runoff data sets from two watersheds in Taiwan are used separately to investigate the effectiveness and stability of the neural networks for MSA flood forecasting. The results indicate consistently that, even though the MIMO is the most common architecture presented in ANNs, it is less accurate because its multi-objectives (predicted many time steps) must be optimized simultaneously. Both MISO and serial-propagated neural networks are capable of performing accurate short-term (one- or two-step-ahead) forecasting. For long-term (more than two steps) forecasts, only the serial-propagated neural network could provide satisfactory results in both watersheds. The results suggest that the serial-propagated structure can help in improving the accuracy of MSA flood forecasts.
Subjects
neural networks
multi-step-ahead
flood forecasting
serial-propagated structure
Taiwan
Type
journal article
File(s)
Loading...
Thumbnail Image
Name

40.pdf

Size

1.05 MB

Format

Adobe PDF

Checksum

(MD5):b56632743f227e0e91833c787b4c4e7f

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science