Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Challenges of mitochondrial DNA editing in mammalian cells: focus on treatment of cardiovascular disease
 
  • Details

Challenges of mitochondrial DNA editing in mammalian cells: focus on treatment of cardiovascular disease

Journal
Vessel Plus
Journal Volume
6
Date Issued
2022-01-01
Author(s)
Khotina, Victoria A.
Ekta, Mariam Bagheri
Baig, Mirza S.
WEI-KAI WU  
Grechko, Andrey V.
Sukhorukov, Vasily N.
DOI
10.20517/2574-1209.2022.28
URI
https://vpjournal.net/article/view/5356
https://scholars.lib.ntu.edu.tw/handle/123456789/632004
URL
https://api.elsevier.com/content/abstract/scopus_id/85148515989
Abstract
Atherosclerosis is the major cause of occurrence and development of cardiovascular disease. Mutations in mitochondrial DNA (mtDNA) can lead to the development of several pathologies. Over the last few years, there has been increasing evidence that mitochondrial dysfunction caused by mtDNA mutations is associated with atherogenesis and other diseases of the cardiovascular system. Several therapeutic approaches have been developed for the improvement of mitochondrial function, and they are mainly associated with the cellular and tissue antioxidant defense system. However, these approaches are not targeted at mtDNA mutations, which trigger the pathogenesis of disease. Gene-editing technologies could be a promising approach for the treatment of cardiovascular disease caused by mtDNA mutations. To date, such technologies have shown considerable success in mitochondrial gene editing in cell and animal models. Gene-editing technologies allow the determination of the role of mitochondrial genome mutations in the development and complication of various chronic diseases. Nevertheless, further investigation and optimization in this field is required for future human trials. This review highlights the progress and existing challenges of modern technologies and approaches to mitochondrial gene editing.
Subjects
atherosclerosis | Cardiovascular disease | ddCBE | gene editing | mito-CRISPR/Cas9 | mitochondrial DNA mutation | mitoTALEN | mtZFN
SDGs

[SDGs]SDG3

Type
other

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science