Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Microscale hydrodynamic analysis of aerobic granules in the mass transfer process
 
  • Details

Microscale hydrodynamic analysis of aerobic granules in the mass transfer process

Journal
Environmental Science and Technology
Journal Volume
44
Journal Issue
19
Pages
7555-7560
Date Issued
2010
Author(s)
Liu L.
Li W.-W.
Sheng G.-P.
Liu Z.-F.
Zeng R.J.
Liu J.-X.
Yu H.-Q.
Lee D.-J.  
DOI
10.1021/es1021608
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/408394
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77957341474&doi=10.1021%2fes1021608&partnerID=40&md5=c0816c17da4004736ae669ca1e1210d0
Abstract
The internal structure of aerobic granules has a significant impact on the hydrodynamic performance and mass transfer process, and severely affects the efficiency and stability of granules-based reactors for wastewater treatment. In this study, for the first time the granule complex structure was correlated with the hydrodynamic performance and substrates reactions process. First, a series of multiple fluorescence stained confocal laser scanning microscopy images of aerobic granules were obtained. Then, the form and structure of the entire granule was reconstructed. A three-dimensional computational fluid dynamics study was carried out for the hydrodynamic analysis. Two different models were developed on the basis of different fluorescence stained confocal laser scanning microscopy images to elucidate the roles of the granule structure in the hydrodynamic and mass transfer processes of aerobic granules. The fluid flow behavior, such as the velocity profiles, the pathlines and hence the hydrodynamic drag force, exerted on the granule in a Newtonian fluid, was studied by varying the Reynolds number. Furthermore, the spatial distribution of dissolved nutrients (e.g., oxygen) was acquired by solving the convection-diffusion equations on the basis of the reconstructed granule structure. This study demonstrates that the reconstructed granule model could offer a better understanding to the mass transfer process of aerobic granules than simply considering the granule structure to be homogeneous. ? 2010 American Chemical Society.
SDGs

[SDGs]SDG11

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science