Kerr black holes as elementary particles
Journal
Journal of High Energy Physics
Journal Volume
2020
Journal Issue
1
Date Issued
2020
Author(s)
Abstract
Long ago, Newman and Janis showed that a complex deformation z → z + ia of the Schwarzschild solution produces the Kerr solution. The underlying explanation for this relationship has remained obscure. The complex deformation has an electromagnetic counterpart: by shifting the Coloumb potential, we obtain the EM field of a certain rotating charge distribution which we term Kerr. In this note, we identify the origin of this shift as arising from the exponentiation of spin operators for the recently defined “minimally coupled” three-particle amplitudes of spinning particles coupled to gravity, in the large- spin limit. We demonstrate this by studying the impulse imparted to a test particle in the background of the heavy spinning particle. We first consider the electromagnetic case, where the impulse due to Kerr is reproduced by a charged spinning particle; the shift of the Coloumb potential is matched to the exponentiated spin-factor appearing in the amplitude. The known impulse due to the Kerr black hole is then trivially derived from the gravitationally coupled spinning particle via the double copy. ? 2020, The Author(s).
Type
journal article