Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Biomechatronics Engineering / 生物機電工程學系
  4. Online geometry calibration for retrofit computed tomography from a mouse rotation system and a small-animal imager
 
  • Details

Online geometry calibration for retrofit computed tomography from a mouse rotation system and a small-animal imager

Journal
Medical Physics
Journal Volume
50
Journal Issue
1
Date Issued
2023-01-01
Author(s)
Zhou, Huanyi
Reeves, Stanley
CHENG-YING CHOU  
Brannen, Andrew
Panizzi, Peter
DOI
10.1002/mp.15953
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/634230
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137797449&doi=10.1002%2fmp.15953&partnerID=40&md5=8c9d9240943cac5c9f26c74a13e991bb
URL
https://api.elsevier.com/content/abstract/scopus_id/85137797449
Abstract
Background: Computed tomography (CT) generates a three-dimensional rendering that can be used to interrogate a given region or desired structure from any orientation. However, in preclinical research, its deployment remains limited due to relatively high upfront costs. Existing integrated imaging systems that provide merged planar X-ray also dwarfs CT popularity in small laboratories due to their added versatility. Purpose: In this paper, we sought to generate CT-like data using an existing small-animal X-ray imager with a specialized specimen rotation system, or MiSpinner. This setup conforms to the cone-beam CT (CBCT) geometry, which demands high spatial calibration accuracy. Therefore, a simple but robust geometry calibration algorithm is necessary to ensure that the entire imaging system works properly and accurately. Methods: Because the rotation system is not permanently affixed, we propose a structure tensor-based two-step online (ST-TSO) geometry calibration algorithm. Specifically, two datasets are needed, namely, calibration and actual measurements. A calibration measurement detects the background of the system forward X-ray projections. A study on the background image reveals the characteristics of the X-ray photon distribution, and thus, provides a reliable estimate of the imaging geometry origin. Actual measurements consisted of an X-ray of the intended object, including possible geometry errors. A comprehensive image processing technique helps to detect spatial misalignment information. Accordingly, the first processing step employs a modified projection matrix-based calibration algorithm to estimate the relevant geometric parameters. Predicted parameters are then fine-tuned in a second processing step by an iterative strategy based on the symmetry property of the sum of projections. Virtual projections calculated from the parameters after two-step processing compensate for the scanning errors and are used for CT reconstruction. Experiments on phantom and mouse imaging data were performed to validate the calibration algorithm. Results: Once system correction was conducted, CBCT of a CT bar phantom and a cohort of euthanized mice were analyzed. No obvious structure error or spatial artifacts were observed, validating the accuracy of the proposed geometry calibration method. Digital phantom simulation indicated that compared with the preset spatial values, errors in the final estimated parameters could be reduced to 0.05° difference in dominant angle and 0.5-pixel difference in dominant axis bias. The in-plane resolution view of the CT-bar phantom revealed that the resolution approaches 150 (Formula presented.) m. Conclusions: A constrained two-step online geometry calibration algorithm has been developed to calibrate an integrated X-ray imaging system, defined by a first-step analytical estimation and a second-step iterative fine-tuning. Test results have validated its accuracy in system correction, thus demonstrating the potential of the described system to be modified and adapted for preclinical research.
Subjects
CT preprocessing | online geometry calibration | preclinical CBCT
SDGs

[SDGs]SDG3

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science