Voltage gating of Escherichia coli porin channels: role of the constriction loop
Journal
Proceedings of the National Academy of Sciences of the United States of America
Journal Volume
94
Journal Issue
13
Date Issued
1997-06-24
Author(s)
Abstract
In the homotrimeric OmpF porin from Escherichia coli, each channel is constricted by a loop protruding into the beta-barrel of the monomer about halfway through the membrane. The water-filled channels exist in open or closed states, depending on the transmembrane potential. For the transition between these conformations, two fundamentally different mechanisms may be envisaged: a bulk movement of the constriction loop L3 or a redistribution of charges in the channel lumen. To distinguish between these hypotheses, nine mutant proteins were constructed on the basis of the high-resolution x-ray structure of the wild-type protein. Functional changes were monitored by measuring single-channel conductance and critical voltage of channel closing. Structural alterations were determined by x-ray analysis to resolutions between 3.1 and 2.1 A. Tethering the tip of L3 to the barrel wall by a disulfide bridge (E117C/A333C), mobilizing L3 by perturbing its interaction with the barrel wall (D312N, S272A, E296L), or deleting residues at the tip of the loop (Delta116-120) did not alter appreciably the sensitivity of the channels to an external potential. A physical occlusion, due to a gross movement of L3, which would cause the channels to assume a closed conformation, can therefore be excluded.
Subjects
β-barrel | Outer membrane protein | Single- channel conductance | Site-directed mutagenesis | X-ray structure
Type
journal article
