Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. SMITH: A Self-supervised Downstream-Aware Framework for Missing Testing Data Handling
 
  • Details

SMITH: A Self-supervised Downstream-Aware Framework for Missing Testing Data Handling

Journal
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Journal Volume
13281 LNAI
Pages
499-510
Date Issued
2022
Author(s)
Yang C.-C
Li C.-T
SHOU-DE LIN  
DOI
10.1007/978-3-031-05936-0_39
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130260540&doi=10.1007%2f978-3-031-05936-0_39&partnerID=40&md5=bfa428c6009ff2150fc63a1f5b4920d5
https://scholars.lib.ntu.edu.tw/handle/123456789/632338
Abstract
Missing values in testing data has been a notorious problem in machine learning community since it can heavily deteriorate the performance of downstream model learned from complete data without any precaution. To better perform the prediction task with this kind of downstream model, we must impute the missing value first. Therefore, the imputation quality and how to utilize the knowledge provided by the pre-trained and fixed downstream model are the keys to address this problem. In this paper, we aim to address this problem and focus on models learned from tabular data. We present a novel Self-supervised downstream-aware framework for MIssing Testing data Handling (SMITH), which consists of a transformer-based imputation model and a downstream label estimation algorithm. The former can be replaced by any existing imputation model of interest with additional performance gain acquired in comparison with that of their original design. By advancing two self-supervised tasks and the knowledge from the prediction of the downstream model to guide the learning of our transformer-based imputation model, our SMITH framework performs favorably against state-of-the-art methods under several benchmarking datasets. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Subjects
Downstream-aware; Missing testing data; Self-supervised learning; Tabular data; Transformer
Other Subjects
Electric transformer testing; Machine learning; Down-stream; Downstream-aware; Machine learning communities; Missing testing data; Missing values; Performance; Self-supervised learning; Tabular data; Testing data; Transformer; Data handling
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science