Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Biomechatronics Engineering / 生物機電工程學系
  4. Development of Navigation System for Tea Field Machine Using Semantic Segmentation
 
  • Details

Development of Navigation System for Tea Field Machine Using Semantic Segmentation

Journal
IFAC-PapersOnLine
Journal Volume
52
Journal Issue
30
Pages
108-113
Date Issued
2019
Author(s)
Lin Y.-K
SHIH-FANG CHEN  
DOI
10.1016/j.ifacol.2019.12.506
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081056912&doi=10.1016%2fj.ifacol.2019.12.506&partnerID=40&md5=9221a23ad6cf7fc36dac853811ae3c7b
https://scholars.lib.ntu.edu.tw/handle/123456789/581603
Abstract
Labor shortage is a critical issue in most of industries, especially in agricultural production. In recent year, riding-Type tea plucking machine was imported to provide a relatively high-efficient solution for tea harvesting. However, high-level driving skill is essential. Improper operation may cause damage on tea trees and also lead to mechanical failure. A real-Time image-based navigation system may provide an automatic choice to mitigate the difficulties. In this study, deep neural network architectures were applied to semantic segmentation to derive the contours of the tea rows and identify the obstacles in the field scene. Performance of four models including 8s-, 16s-, 32s-of the fully convolutional networks (FCN) and ENet were compared. Considering the overall performance, ENet outperformed other models with the mean intersection over unit (mean IU) of 0.734, the mean accuracy of 0.941, and the inference time of 0.176 s. Furthermore, Hough transform was introduced to obtain the guidelines based on the classification. The average bias of angles and distance were 6.208° and 13.875 pixels, respectively. The preliminary result showed the feasibility of using the developed navigation system for field application. To achieve higher precision, images that cover a diverse scenario in the field were being collected and trained in future work. © 2019 Elsevier B.V. All rights reserved.
Subjects
Automatic navigation; deep learning; image processing; semantic segmentation; tea plucking machine
SDGs

[SDGs]SDG2

Other Subjects
Agriculture; Deep learning; Deep neural networks; Failure (mechanical); Hough transforms; Image processing; Navigation systems; Network architecture; Neural networks; Semantics; Tea; Agricultural productions; Automatic navigation; Convolutional networks; Critical issues; Field application; Mechanical failures; Real time images; Semantic segmentation; Image segmentation
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science