Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. Automated Construction Progress Monitoring of Partially Completed Building Elements Leveraging Geometry Modeling and Appearance Detection with Deep Learning
 
  • Details

Automated Construction Progress Monitoring of Partially Completed Building Elements Leveraging Geometry Modeling and Appearance Detection with Deep Learning

Journal
Construction Research Congress 2022: Computer Applications, Automation, and Data Analytics - Selected Papers from Construction Research Congress 2022
Journal Volume
2-B
Pages
708-718
Date Issued
2022
Author(s)
Pal A
JACOB JE-CHIAN LIN  
SHANG-HSIEN HSIEH  
DOI
10.1061/9780784483961.074
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128877936&doi=10.1061%2f9780784483961.074&partnerID=40&md5=3fece7023fa8c0189162b642056da2e6
https://scholars.lib.ntu.edu.tw/handle/123456789/625269
Abstract
The exponential growth of on-site visual data and the advent of computer vision techniques have created a unique opportunity to improve automated construction progress monitoring methods. To date, the state-of-the-art vision-based methods are capable of reporting the progress of a building element in terms of binary function. However, for better schedule control and micro-level monitoring, it is necessary to report the partial completion of tasks associated with an element. This research proposes a novel approach for computing and reporting the partial progress of tasks in terms of completion percentage using the on-site visual data, 4D BIM, and deep-learning-based computer vision algorithms. The approach leverages geometry modeling and appearance detection to automatically calculate the percentage completion of tasks associated with each element. The proposed approach is applied to a building construction project, and the preliminary results demonstrate its applicability to generate completion percentage per task in the lookahead schedule for accurate daily progress report generation. © 2022 ASCE.
Other Subjects
Architectural design; Computer vision; Construction; Geometry; Automated construction; Building element; Computer vision techniques; Construction progress; Exponential growth; Geometry model; Progress monitoring methods; State of the art; Vision-based methods; Visual data; Deep learning
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science