Quantum-Dot-Sensitized Photocatalytic Water Splitting Hydrogen Generation and Solar Cells
Date Issued
2010
Date
2010
Author(s)
Chang, Yu-Chuan
Abstract
Global warming much attention in recent years, and the oil will eventually run out, so people positively develop the natural resources of materiaproduction and solar cell have become an important direction of development. It is necessary to develop novel working electrode in order to improve its energy conversion efficiency. In this study, utilizing hydrothermal method to grow high-isotropic one-dimensional zinc oxide nanorods on fluorine-doped tin oxide substrate as the working electrode. Synthesis of cadmium telluride or mercury cadmium telluride quantum dots as photosensitizer. Then quantum dots attached to zinc oxide nanorods on the working electrode, and then successfully produced functional effects of a photosensitive compound semiconductor films.
In this study, cadmium telluride and mercury cadmium telluride quantum dots adsorbed on the surface of zinc oxide nanorods. Using quantum dots absorb visible light in the red side band of the region to enhance the photocurrent and thus enhance the photoelectric conversion efficiency, which had successfully enhanced quantum dots-sensitized photocatalytic water splitting and quantum dot-sensitized solar cell efficiency. The results showed that the efficiency of cadmium telluride quantum dots join to ZnO nanorods increased from 0.66% to 1.83%, which enhance the efficiency of about 200%, and the efficiency of mercury cadmium telluride quantum dots join to ZnO nanorods increased from 0.66% to 2.24%, which enhance the efficiency of about 240%.
In addition to doing cell toxicity test of the cadmium telluride and mercury cadmium telluride quantum dots and finding that cadmium telluride and mercury cadmium telluride quantum dots have a role in induced cell death. This will inhibit the cell growth. Therefore, further on the mechanism of quantum dots for analysis of apoptosis.
Subjects
cadmium telluride
mercury cadmium telluride
photocatalytic hydrogen production
solar cell
quantum dots
SDGs
Type
thesis
File(s)![Thumbnail Image]()
Loading...
Name
ntu-99-R97223124-1.pdf
Size
23.32 KB
Format
Adobe PDF
Checksum
(MD5):91ac7282e20f917fc29e3e3b293d109e
