Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Applied Mechanics / 應用力學研究所
  4. Advanced Exergoeconomic Evaluation of Large-Scale Coal-Fired Power Plant
 
  • Details

Advanced Exergoeconomic Evaluation of Large-Scale Coal-Fired Power Plant

Journal
Journal of Energy Engineering
Journal Volume
146
Journal Issue
1
Start Page
4019032
ISSN
07339402
Date Issued
2020
Author(s)
Wang, Ligang
Fu, Peng
Yang, Zhiping
TZU-EN LIN  
Yang, Yongping
Tsatsaronis, George
DOI
10.1061/(ASCE)EY.1943-7897.0000633
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-85075039633&origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/720902
Abstract
Conventional exergy-based analysis can only identify the location and magnitude of thermodynamic inefficiencies (exergy destruction), while an advanced analysis can further reveal their source and avoidability by splitting each inefficiency into endogenous/exogenous and avoidable/unavoidable parts and their combinations. In this paper, a framework and implementation for a comprehensive evaluation of energy systems via conventional and advanced exergoeconomic analyses are summarized and performed to a state-of-the-art pulverized-coal power plant. An easy-to-implement procedure was proposed to calculate the endogenous exergy destruction. Different from the previous analyses of such plants, the boiler subsystem of the considered plant is simulated in detail with coal combustor and a series of (radiation- or convection-dominating) heat surfaces. The exergoeconomic performances (exergy dissipation as well as the related costs) of each component and the whole system are evaluated first. Then, the splitting of all exergy destructions and costs is performed for the insights of their sources and avoidability to suggest improvement measures. The results show that large parts of the exergy destructions within most of the components are endogenous; particularly, over half of the avoidable thermodynamic inefficiencies within most of the components are endogenous with the share of the avoidable part varying significantly among different components. Most costs related to either investment or exergy destruction are endogenous, and only nearly 10% of the costs of the whole system could be avoided for such a modern power plant. Moving convection-dominating heating surfaces into the furnace and increasing air-preheating temperature are suggested for performance enhancement. © 2019 American Society of Civil Engineers.
Subjects
Advanced exergoeconomic analysis
Avoidable exergy destruction
Endogenous exergy destruction
Improvement strategy
Thermal power plant
Publisher
American Society of Civil Engineers (ASCE)
Description
論文編號: 4019032
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science